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Abstract. Random Forests were introduced by Breiman for feature
(variable) selection and improved predictions for decision tree models. The
resulting model is often superior to AdaBoost and bagging approaches. In
this paper the random forests approach is extended for variable selection
with other learning models, in this case Partial Least Squares (PLS) and
Kernel Partial Least Squares (K-PLS) to estimate the importance of vari-
ables. This variable selection method is demonstrated on two benchmark
datasets (Boston Housing and South African heart disease data). Finally,
this methodology is applied to magnetocardiogram data for the detection
of ischemic heart disease.

1 Partial Least Squares (PLS) and K-PLS

Partial Least Squares Regression (PLS) was introduced by Herman Wold [1] for
econometrics modeling of multi-variate time series. PLS can be viewed as a
“better” Principal Components Analysis (PCA) regression method, where the
data are first projected into a different and non-orthogonal basis, and only the
most important PLS components (or latent variables) are considered for build-
ing a regression model (similar to PCA). The difference between PLS and PCA
is that the new set of basis vectors in PLS is not a set of successive orthogonal
directions that explain the largest variance in the data, but are actually a set of
conjugant gradient vectors to the correlation matrix. The NIPALS implementa-
tion of PLS [2] is elegant and fast.

Rosipal introduced K-PLS in 2001 [3] as a nonlinear extension to the linear
PLS method instead of using linear kernel K-PLS [4]. This nonlinear extension
of PLS makes K-PLS a powerful machine learning tool for classification as well
as regression. Powerful variable selection methods have been implemented for
PLS and K-PLS, and unlike SVMs, multiple output models are easy to imple-
ment. K-PLS can also be formulated as a paradigm closely related (and almost
identical) [5] to Support Vector Machines (SVM) [6, 7]. K-PLS uses the same
kernel trick as is commonly used in SVMs. K-PLS also provides a purely statis-
tical method, that has been widely used in chemometrics during the past decade.
In addition, the idea of using of K-PLS rather than SVMs can be motivated on
several levels: (i) PLS is the method by choice in chemometrics and drug de-
sign, and K-PLS is a natural extension to PLS; (ii) K-PLS results are generally
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comparable to those obtained from SVMs (Table 1); (iii) A powerful feature se-
lection procedure has been implemented with K-PLS that is fully benchmarked
and ranked well in the 2003 NIPS feature selection challenge [8].

2 Variable Selection with Random Forests

Dimensionality reduction is a challenging problem for supervised and unsuper-
vised machine learning for classification, regression, and time series prediction.
In this paper we focus on variable selection for supervised classification and re-
gression models. The taxonomy of variable selection can be divided into two
branches: variable ranking and subset selection [9, 10]. Variable subset selection
can be further divided into (i) wrappers, (ii) filters and (iii) embedded methods.
The pros and cons of different variable selection methods vary depending on the
specific domain problem, computational expense, complexity, and robustness [9].
The motivation of introducing random forests feature selection is to provide an
alterative method, which is easily understood, and powerful compared with other
feature selection approaches.

Evangelista et al. recently introduced the concept of fuzzy ROC curves and
extended this technique to a novel random forests K-PLS modeling technique for
variable selection [11]. Random Forests (RF) were introduced by Breiman [12]
as a combination of decision tree predictors. RF consist of several hundred
models with randomly selected variable subsets (i.e., there is a different subset
of training and validation data for each individual model). The main idea is
that after generating a vast number of trees, they vote for the most popular
variables based on performance. In [12], bagging is used in tandem with RF
variable selection in order to reduce the variance. In this paper we extend this
random forests idea to estimate the importance of variables with PLS and K-PLS
models.

RF variable selection consists of (i) variable subset selection and (ii) aggregate
bagging models with variable ranking. For each variable subset a PLS or K-
PLS model is used for training and validation. The validation performance is
expressed by the q2 and Q2 metrics as described in Section 3. For each variable
we will add a voting score based on the (1−Q2)p metric for the model in which
this variable participated as illustrated in Figure 1. In the formula above, p is a
parameter (usually set to 1.3, determined by trial and error).

Lower ranked variables are eliminated based on empirical performance heuris-
tics. This approach can either be done in a greedy way, where variables are
selected after applying several bootstraps as illustrated in Fig. 1, or can proceed
iteratively, where a few variables are eliminated at a time, and then the entire
process is repeated again. Because the procedure as outlined above might lead
to discarding significant variables, we introduce a random gauge variable [8, 13],
which can either be a uniform or Gaussian (mean 0 and variance 1). A crite-
rion for selecting the relevant variables can now be established by eliminating
variables with voting scores below the score for gauge variable.

After the variable selection stage a new K-PLS model is built based on dif-
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Fig. 1: Model building and validation.

ferent bootstraps with bagging. Predictive models are compared for different
variable selection methods based on a Sensitivity Analysis [8] and simple lin-
ear kernel PLS models with Z-scores for both Boston housing data and South
African Heart disease data.

3 Metrics

Two error measures for the training set can be defined. The correlation coeffi-
cient squared between target values and predictions for the response, r2, is given
by:

r2 =
(
∑ntrain

i=1 (ŷi − ¯̂y)(yi − ȳ))2
∑ntrain

i=1 (ŷi − ¯̂y)2
∑ntrain

i=1 (yi − ȳ)2

A second and more powerful measure is the so-called “Press r squared” or R2,
because it accounts for the residual error as well.

R2 = 1 −
∑ntrain

i=1 (yi − ŷi)2∑ntrain

i=1 (yi − ȳ)2

Both metrics are less dependent on the scaling and magnitude of the response
value than the Least Mean Square Error (LMSE). For similar purposes, q2 and
Q2, defined as 1− r2 and 1−R2 respectively, are used to assess the performance
of validation or test data. The smaller the q2 and Q2 the better; ideally, both
values should be close to each other. Detailed information about these metrics
is given in [14].

4 Experimental Results

4.1 Benchmark Data

Random Forests variable selection with K-PLS was benchmarked with two data
sets: South African Heart Data (SAHD) and the Boston housing market data.
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The SAHD are a subset from a larger dataset [15] which defines an almost linear
classification problem. It describes a retrospective sample of males in a high-
risk heart-disease region of the Western Cape in South Africa. There are roughly
two controls per case of CHD. It consists of one response and 9 variables: sys-
tolic blood pressure (sbp), cumulative tobacco (tobacco), low density lipoprotein
cholesterol (ldl), adiposity, family history of heart disease (famhist), type-A be-
havior (typea), obesity, alcohol, and age. A total of 462 samples are included
in this data set. The Boston housing data is a standard benchmark regression
dataset from the UCI data Repository for Machine Learning [16]. These bench-
mark data have 506 samples with 12 continuous, one binary variables and one
response variable.

Datasets q2 Q2 ROC LMSE % Correct Comments
Boston (K-PLS) 0.129 0.135 (0.967) 3.904 - LVs =12, σ = 4
Boston (LS-SVM) 0.122 0.128 (0.963) 3.811 - σ = 4
Boston (SVM) 0.133 0.135 (0.971) 3.903 - σ = 4
Boston (PLS) 0.260 0.278 (0.934) 5.607 - -
Heart (K-PLS) 0.760 0.766 0.790 0.426 68.8 LVs = 5, σ = 30
Heart (LS-SVM) 0.730 0.748 0.812 0.421 68.8 σ = 30
Heart (SVM) 0.750 0.834 0.794 0.445 71.4 σ = 30
Heart (PLS) 0.749 0.755 0.797 0.423 67.9 -
MCG (K-PLS) 0.595 0.611 0.855 0.776 82.5 LVs = 5, σ = 4
MCG (LS-SVM) 0.607 0.622 0.845 0.783 82.5 σ = 4
MCG (SVM) 0.626 0.651 0.838 0.801 81.7 σ = 4
MCG (PLS) 0.805 0.957 0.761 0.972 73.3 -

Boston (RF) 0.134 0.142 (0.950) 4.008 - “zn”,“age”
Boston (Z-scores) 0.138 0.146 (0.954) 4.071 - “age”,“indus”
Boston (SA) 0.127 0.134 (0.965) 3.900 - “zn”,“indus”
Heart (RF) 0.762 0.768 0.793 0.426 69.6 “sbp”,“alcohol”
Heart (Z-scores) 0.762 0.768 0.793 0.426 69.6 “sbp”,“alcohol”
Heart (SA) 0.785 0.793 0.770 0.433 68.8 “sbp”,“ldl”
MCG (RF) 0.611 0.621 0.852 0.782 81.7 7 vars deleted
MCG (Z-scores) 0.627 0.637 0.848 0.793 78.3 7 vars deleted
MCG (SA) 0.592 0.604 0.859 0.772 83.3 7 vars deleted

Table 1: Experimental results for three datasets (Upper part with all variables;
Lower part with reduction variables)

In each data set, 350 data are randomly chosen as training data with the
remaining data are considered test. We use normalization scaling to pre-process
the data for both data sets. Random Forests approach is used for variable
selection with K-PLS models. After variable selection, the training model is
built with a leave-one-out model, and the validation results are based on a bagged
model prediction.

In order to validate the experimental results, only training data are used
for RF feature selection. In each iteration, we divide the training data into two
parts. One part is used for training on the randomly selected variables, the other
is used for validation. There are therefore two main parametric choices in the
model: the number of random variables and the number of training data. For
the Boston housing data, 35, 70, and 105 data are chosen for the validation set
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over 3, 000 Random Forests models. The number of model variables is set at 4,
6, 8, and 10 respectively. For the South African Heart Data, the same number
of validation data are used, but only 1000 Random Forests models are applied
due to the smaller number of selected variables. The number of model variables
is now set to 4, 6, 7 and 8.

The final selection of ranked variables is relatively insensitive to the selection
of the number of variables in the validation data, and to the number of variables
used in the individual model selection. Based on the relative variable importance
metric for the SAHD data and the variables “alcohol” and “sbp” are dropped for
the SAHD data. For the Boston housing data, the proportion of residential land
zoned (ZN) and age (AGE) are discarded from the original variables. Note that
for both data sets only two features were dropped in order to maintain similar
performance metrics for the reduced variable set.

RF variable selection for both benchmark datasets was based on the linear
K-PLS model as shown in Table 1. Because leave-one-out validation is used for
all training models, the performance metrics have a low variance. Note also that
there is no significant difference between the q2 and Q2 metrics.

4.2 Binary Classification of Magnetocardiograms (MCG)

The aim of this application is the automated detection of ischemic heart disease
for MCG data in order to separate and classify abnormal from normal data sets.
The data are from 325 patients consisting of 74 features each.

10, 000 Random Forests models are used for 40, 50, 60, and 70 variables re-
spectively. The variable ranking is relatively robust with the number of selected
variables in the RF as shown in Table 1. In the final model, the 7 variables with
the lowest scores are discarded, maintaining a similar Q2/q2 performance as for
the original 74 variable model.

In addition, Z-scores variable ranking and Sensitivity Analysis are used as
well for each data set. The same number of variables were eliminated in the
three variable reduction techniques. For the Boston Housing, South African
Heart disease and MCG data, 12, 5 and 5 Latent Variables (LVs) were used.
Deleted variables are listed in the last column of Table 1. Table 1 shows that
Random Forests results outperform Z-scores ranking and RF are close to those
obtained from Sensitivity Analysis. Especially, when a large number of variables
is discarded, RF variable selection seems to be superior.

5 Conclusion and Future Work

Benchmark data sets were used to examine a novel variable selection method
based on Random Forests and K-PLS and this technique was subsequently ap-
plied to magnetocardiogram data with good performance results. Random gauge
variables were used to determine which variables to discard by retaining a sim-
ilar performance metric. Future research will aim to automate the RF variable
selection procedure with more robust and less empirical procedures.
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