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Abstract. Despite several previous studies, little progress has been made in build-
ing successful neural systems for image segmentation in digital hardware. Spiking
neural networks offer an opportunity to develop models of visual perception with-
out any complex structure based on multiple neural maps. Such models use ele-
mentary asynchronous computations that have motivated several implementations
on analog devices, whereas digital implementations appear as quite unable to han-
dle large spiking neural networks, for lack of density. In this work, we consider a
model of integrate-and-fire neurons organized according to the standard LEGION
architecture to segment grey-level images. Taking advantage of the local and dis-
tributed structure of the model, a massively distributed implementation on FPGA
using pipelined serial computations is developed. Results show that digital and
flexible solutions may efficiently handle large networks of spiking neurons.

1 Introduction

Biological arguments indicate that some vision tasks, as well as most olfactory tasks,
cannot be satisfactorily performed by standard neural models that use an analog com-
putation mode, where values stand for mean firing rates of natural spiking neurons
[1, 2, 3, 4]. Temporal coding has to be fully exploited, for example through the no-
tion of neuron synchronization [5, 6]. Among several works carried out by our team so
as to develop a fully neural system for autonomous robotics, we have studied the use
of standard spiking models for a rough real-time analysis of the robot visual environ-
ment. In order to study the possibilities of embedded real-time implementations, we
have first chosen to implement a well-known though criticized spiking model for image
segmentation on FPGAs: the integrate-and-fire LEGION model [7], since this model is
able to segment grey-level images, and its underlying 2D structure fits the topological
constraints of FPGA implementations. Our work mostly focuses on low-area solutions,
based on the use of a standard serial arithmetic within pipelined loops. As a result,
a fully parallel implementation of the LEGION network has been mapped onto a Xil-
inx VIRTEX FPGA device, large enough to handle our low-resolution robot image
sequences. Steady communication channels, synapses, have been preferred to event-
driven systems so that our implementation is fully distributed. The LEGION model is
described in section 2. The global architecture of the hardware implementation of the
spiking neural model is detailed in section 3, before implementation results are given in
section 4.
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Fig. 1: LEGION network : a) 2D architecture - b) image segmentation

2 LEGION Model Description

2.1 Principle

Oscillations of neurons in the cortex are now considered as a important mechanism
that is involved in several cognitive functions of the brain. Our research team is more
particularly interested in the role that this mechanism plays in perceptive tasks such as
vision and olfaction [2].

Several studies have shown that oscillations of neurons take part in several percep-
tive functions of the cortex. These oscillations are used in visual perception to segment
features in a visual scene [8]. Neurons in cortical areas such as primary visual area V1
are known to “see” only a small localized part of the visual field (such areas are retino-
topically organized). And yet synchronized behaviors have been detected for groups of
neurons which visual fields are strictly separated. These neurons bind together thanks
to the synchronization of their firing activities.

The LEGION network (Local Excitatory Global Inhibitory Oscillator Network) has
been proposed in [9] based on biological considerations. This simple model consists
of a 2D grid of oscillators (see figure 1-a) that receive visual stimuli. Neighboring
oscillators are coupled by excitatory connections, and a global inhibitor gets active
when any oscillator jumps up.

The original LEGION model uses relaxation oscillators [9]. In order to segment
images, the LEGION model groups oscillators that receive their input from similar fea-
tures in an image. Oscillators group together by synchronization of their phase thanks
to excitatory connections, and they get desynchronized from other groups of oscillators
by means of global inhibition (see figure 1-b: in this image taken by our robot camera,
pixels in white correspond to a group of simultaneously firing neurons, thus segmenting
a distinct part of the wall).
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2.2 Integrate-and-fire LEGION

After having been applied to binary image segmentation, and then to grey-level image
segmentation [10], the LEGION architecture has been chosen in [7] as an interesting
model to study synchronization and desynchronization of integrate-and-fire oscillators
(or spiking neurons). Beside the interest of this approach so as to study the complex
properties of assemblies of such oscillators, it provides us with a model that keeps
synchronization properties while being suited for digital VLSI implementation. The
dynamics of a LEGION network of integrate-and-fire oscillators is defined according
to the following equation:

dxi

dt
= −xi + Ii +

∑

j∈N(i)

αij

Zi
Pj − G

where the sum is over the oscillators in a neighborhood, N(i), around oscillator i, xi

is the potential of oscillator i, Zi is the number of nearest neighbors that oscillator i
has (to take into account boundaries problems). αij is the coupling strength. Pj is a
neighbor oscillator that fires at a given time producing an excitation pulse to oscillator
i. G is an instantaneous inhibitory pulse to the entire network when any oscillator in the
network fires. When xi = 1 the oscillator is said to fire; its potential is instantly reset
to 0, and it sends excitation to its neighbors.

The parameter, Ii is the external stimulus given to oscillator i and when applied
to image segmentation it depends on the input image. In order to segment grey level
images, the parameter Ii is computed as follows [10]. Let pi be the intensity of pixel
i. If |pi − pj | is less that a given threshold, then the two pixels are said to satisfy
the pixel difference test. Two oscillators have a nonzero coupling strength only if they
are neighbors and if their pixels satisfy the pixel difference test. The weights of the
connection strengths αij are determined by the number of neighboring pixels of i that
pass the pixel difference test. If half of the pixels in N(i) satisfy the pixel difference
test, then Ii is set to a value IL greater than 1. If no neighboring pixel satisfies the pixel
difference test then Ii is set to zero. Otherwise, Ii is given a stimulus IN , which is less
than but near 1.

It has been demonstrated that integrate-and-fire LEGION maintains its segmenta-
tion capabilities since their synchronizing properties are similar to relaxation oscilla-
tors [7]. Due to the oscillatory characteristic in LEGION, a large amount of differen-
tial equations need to be solved, which induces a high computational load and power
consuming task in conventional processors. The use of integrate-and-fire oscillators
are attractive for digital VLSI implementation for perceptual organization in embedded
systems.

3 LEGION Hardware Implementation

3.1 Field Programmable Gate Arrays for Neural Computations

The very fine-grain parallelism of neural networks uses many information exchanges,
thus it better fits hardware implementations than conventional processors [11]. Con-
figurable hardware devices such as FPGAs (Field Programmable Gate Arrays) offer a
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Fig. 2: Architecture of a single neuron

cheap compromise between the hardware efficiency of digital ASICs and the flexibility
of a simple software-like handling.

Most work on digital neural network implementations uses digital words to imple-
ment classical neural models where all interactions are represented by the mean firing
rate of the neurons. On the other hand, recent research on neuroscience has developed
spiking neural models that are much closely coupled with action potential or spikes
communication and even more tightly related to the brain abilities than classical neural
models. Spiking neural networks appear as well suited to be implemented in digital
logic, as spikes are inherently binary [12]. Nevertheless, digital implementations of
large spiking networks are a real challenge, that must be adressed by means of specific
low-area technological choices.

3.2 General architecture

Due to the high computational requirements of LEGION, the highly dense interconnec-
tivity and the area greedy operators, a serial hardware implementation on massively fine
grain parallel structures was chosen. Analysis and experimental results were carried out
to determine the best wordlength in terms of performance and cost. For the FPGA LE-
GION implementation, serial arithmetic with a 12-bit fixed point representation was
chosen in order to favor a high density of neurons per silicon area while preserving
accuracy and performance of the model. The pixels of the input image were coded in 8
bits for gray level image.

The general architecture for the LEGION neuron model is shown in the simplified
block diagram of figure 2. All neurons used in the network are architecturally identical
although they may be functionally different on the image boundaries. The proposed
hardware neuron model consists of four main modules: a test of difference, arithmetic,
a RAM and a leader detector module. The key idea for the conception of the proposed
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neuron architecture relies on the association of basic operators to specific arithmetical
computations of equation 3, the use of some previously stored constants to avoid hard-
ware complexity of nonlinear operators and in the transformation of the differential
equation into an equation of differences using Euler’s method.

Pixel Difference Test Module: The difference test module determines the number of
neighbors that fulfill the requirements of difference test. It is essentially consti-
tuted by a multiplexer, a subtractor, a counter and a comparator optimized for
serial arithmetic.

The difference test is applied between the pixels of two neighbor neurons, the
central pixel and the current pixel selected by the multiplexer. The absolute dif-
ference of these values is compared to a constant threshold, 16 for the current
implementation (any other power of 2 value would lead to a similar architecture).
If the absolute difference is below the threshold, then pixels satisfy the test of
difference. The module operates sequentially with all its neighbors and then it
sends the number of neighbors that satisfy the test to the leader module for fur-
ther utilization.

Arithmetic Module: This module performs the arithmetical operations that define the
dynamics of the neuron model, as stated in equation 3. The module is composed
of a tree of serial adders and subtractors, and AND gates. The arithmetic mod-
ule receives excitation signals from its neighbors, the global inhibition, and the
previous internal potential stored in the RAM module. An integration step ε = 1

4
is used to solve the difference equation through the Euler’s method. To avoid
multipliers, the potential and ε times the potential are simultaneously provided
by the RAM module using an appropriated addressing scheme.

RAM Module: This module is basically constituted by a 16x1 dual port memory
RAM that stores the neuron internal potential produced by the arithmetic module
on each clock cycle as shown in figure 5(a). The two bus addresses are driven
by two global counters, delayed 4 clock cycles one of each other, to provide the
current neuron potential and the potential scaled with the integration step ε.

Leader Detector and Excitation Module: The leader detector module determines the
modified value of a pixel associated to an oscillator, and generates the excitation
potential contribution at a given time, and the excitation spike. Three possible
values for the modified pixel may be assigned (see section 2.2): IL = 1.25,
IN = 0.95, and 0. Also, the excitation potential contribution depends on the
number of neighbors satisfying the difference test. The module computes this
strength, selecting values previously stored in an internal memory in order to
avoid multipliers and divisions. The module generates an excitation pulse if the
internal potential is greater than the unit.

4 FPGA Implementation Results

The proposed neuron hardware model and the LEGION oscillator network have been
successfully modeled in VHDL and implemented in a FPGA device. The VHDL model
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of LEGION network is configurable and can be built up for different gray level image
sizes. The synthesis results for the neuron hardware model and a 16x16 configura-
tion of LEGION network targeted to a Xilinx Virtex XC2V1500FF896-4 device are:
7678/7680 (99%) used slices, 12295/15360 (83%) used LUTs, and 5512/15360 (35%)
used flip-flops. The estimated maximum clock frequency is 50 MHz.

The massively parallel and pipelined implementation appears as highly attractive
for FPGA implementation. It is particularly efficient from the device utilization point
of view. A testbench was developed to provide stimulus to the architecture from a
previously captured image. The produced results were compared to the software im-
plementation of LEGION providing satisfactory results in the tests performed by the
hardware model (functional and timing simulations).

5 Conclusion

This paper presents a massively distributed digital implementation of a spiking neural
network for image segmentation based on the time oscillatory correlation theory. The
results show that efficient implementations of large neural networks can be achieved
through the use of specialized datapaths with serial arithmetic.

Our implementation allows to handle image segmentation with low area cost in most
up to date FPGA technology. The modularity, scalability and high efficient implemen-
tation would be beneficial in an embedded system environment for visual perception.
The implementation presented in this paper brings new perspectives in the digital hard-
ware implementation of spiking neural models and goes forward in the analysis and
design of digital VLSI neuromorphic circuits.
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