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Abstract. In this paper we demonstrate the generalization property
of spiking neurons trained with ReSuMe method. We show in a set of
experiments that the learning neuron can approximate the input-output
transformations defined by another - reference neuron with a high pre-
cision and that the learning process converges very quickly. We discuss
the relationship between the neuron I/O properties and the weight distri-
bution of its input connections. Finally, we discuss the conditions under
which the neuron can approximate some given I/O transformations.

1 Introduction

Ability of learning from examples and the generalization property of neural net-
works are the main reasons for the wide interest of researchers in the field of
neural computation. These properties of neural networks are crucial for their
applications in such tasks as function approximation, classification, identifica-
tion, modelling or control [1].

In this article we focus our attention on the generalization property of spiking
neurons trained with ReSuMe [2]. Spiking Neural Networks (SNN) represent a
special class of artificial neural networks in which information is carried by the
timing of particular spikes [3]. Thus SNN are particularly suitable to process
information encoded in time. It has been demonstrated that spiking neurons are
computationally more powerful than other neural units [4].

ReSuMe is a novel, efficient method of learning in SNN. ReSuMe takes advan-
tage of the spike-based Hebbian processes [5] and integrates them with a novel
concept of remote supervision introduced in [2]. The method enables supervised
learning while still inheriting interesting properties of unsupervised Hebbian ap-
proach, i.e. the locality in time and space, simplicity and the suitability for online
processing. On the other hand, ReSuMe avoids drawbacks of the Hebbian- and,
so called, supervised-Hebbian methods (see e.g. methods discussed in [6, 7]).

Previously we have demonstrated that ReSuMe can effectively learn complex
temporal and spatio-temporal patterns of spikes with the desired accuracy [8].
Here we extend these investigations and discuss a set of experiments, which show
that ReSuMe enables learning of a wide class of transformations, understood as
mappings of input to output spike trains. It appears that the spiking neurons
trained with ReSuMe are able to transform inputs to the desired output signals
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generated by the given reference object, for the patterns not used during the
training. In that sense the neurons demonstrate the generalization property.

2 Methods

In our experiments we investigated the deterministic Leaky-Integrate-and-Fire
neuron models and the static, reliable synapses [3]. To simulate the spiking
structures we used CSIM: A Neural Circuit SIMulator [9]. During the training
phase the synaptic connections were modified according to ReSuMe learning
rules, while during the testing phase all synaptic weights have been kept fixed.

In the ReSuMe method the efficacy w of any synaptic connection between a
presynaptic neuron n'® and a postsynaptic neuron n! is modified according to
the following rule:

%w(t) = [S4t) - S'(t)] [aJr/OOOW(s) St —s) ds|, (1)

where S9(t), S™(t) and S'(t) are target, pre- and postsynaptic spike trains,
respectively. The spike trains are defined here by the sums of the firing times
[3]. It is assumed that the target signal S%(t) is produced by the output of
some reference neuron n?. The parameter a expresses the amplitude of the
non-correlation contribution to the total weight change, while the convolution
function represents the Hebbian-like modifications of w. The integral kernel
W (s) is known as a learning window defined over a time delay s between the
spikes occurring at the pre- and postsynaptic sites [3, 2]. For the excitatory
synapses the term a is positive, and the learning window W(s) has the shape
similar as in STDP. For the inhibitory synapses a is negative and W (s) is defined
similarly as in the anti-STDP rules. For the complete introduction to ReSuMe
we refer readers to [2].

After each learning session k we computed the correlation index C'(k) in order
to quantitatively measure the quality of learning [7]. C(k) is defined as a cross-
correlation of the analog signals obtained from the S%(t) and S'(t) spike trains in
the low-pass filtering operation. In the experiments reported here the correlation
was computed for the time segments of length 5 seconds. The parameter C'(k)
is sensitive not only to the spike missing or to spurious firings, but also to the
spike-time shifts.

3 Results

In a set of experiments a single learning neuron n! was trained to approximate

some given I/O transformations defined by a reference neuron n?. We used a
spiking neuron as a reference object to ensure that any transformation produced
by this object could be potentially reproduced by n' (we refer to [7] for details).

It was assumed that n? and n! were characterized by similar dynamics, but
the neurons differed in the initial weight distributions (w?, @', respectively) in
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their inputs. In such a case the discrepancy of 1/O properties of n? with respect
to n! were uniquely determined by the difference between w® and w'.

In the experiments each neuron received the common set of input signals
through its m synapses. We randomly generated the weight distribution in-
dividually for n! and for n?, however we ensured that the number of excita-
tory/inhibitory synapses were the same in n! as in n¢ (Fig.1.D).

In the first experiment we trained n! with 5 spike patterns of the length
100 seconds. Each pattern was characterized by different rate of spikes (26
up to 42 spikes per second). We used a randomly generated recurrent spiking
network to transform each individual input pattern into a set of m = 30 spike
trains driving both n' and n?. The response of n¢ to this patterns was used
as a target signal for n!. During training the synaptic weights @' at n! were
modified according to eq.(1). The analysis of the correlation index computed
in the consecutive learning sessions for every spike pattern (Fig.1.A) shows that
the mean correlation value increased significantly, already after two learning
sessions, from C'(0) = 0.29 (computed before the training) to C(2) = 0.91. This
result reveals that we obtained a good approximation of the target signal. It
also demonstrates that the learning process converges quickly. We continued
with learning for the next 10 learning sessions, however we did not observe the
significant changes in the C' values. This confirms the stability of the solution.

After the training, the I/O properties of n! were tested on 160 spike pat-
terns. The patterns were generated by the recurrent spiking network. For each
generated pattern the network was characterized by the different initial network
states and the different spike-rates of the network input signals (the rates ranged
from 20 to 50 spikes/second). The correlation C' was computed for every set of
testing patterns (Fig.1.B, grey dots) and compared to the values of C' obtained
for the signals used during learning (black dots). The results show that the
quality of approximation observed in the validation set is comparable to that
obtained in the learning set. This demonstrates that the learning neuron has
properly generalized the learned I/0 relationship (Fig.1.C).

Such a good generalization ability can be explained in the context of the
relationship between the I/O properties of a neuron and its input weight distri-
bution. If we compare w? and w' before training (Fig.1.D, middle), we see that
these distributions differ significantly. This results in a low correlation between
the signals produced initially by n! and n?. Contrary, after the training the
distribution @' becomes very close to w? (Fig.1.D, right). Thus the trained neu-
ron n! and the target neuron n? are supposed to exhibit similar I/O properties,
independently on the used input signals.

We tested our approach on a number of variants with the different number
of inputs, different input signal distributions and lengths as well as with the
different initial weight distributions (an example is presented in Fig.2). In each
case we obtained positive generalization property of the learning neuron.
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Fig. 1: Function approximation and generalization ability of a single spiking
neuron. (A) Correlation of the output and reference spike trains in the consec-
utive learning sessions. Mean and standard deviation (SD) values of correlation
computed for 5 input patterns used during the learning. (B) Generalization
ability of the trained neuron is demonstrated by the comparable levels of cor-
relations (mean and SD) computed for the learning (black dots) and validation
sets (gray dots). (C) Output spike train of the trained neuron compared to the
signal produced by the reference neuron. Both signals generated in response to
the same input pattern used only in a validation set. (D) Weight distribution
w? of the synaptic inputs of the reference neuron (left). The difference between
w? and the corresponding synaptic inputs of the learning neuron w' computed
before the training (middle) decreases significantly after the training (right).

4 Discussion

In the presented experiments we observed that the considered learning neuron
could approximate the I/O transformations defined by the reference neuron with
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Fig. 2: Another variant of the generalization experiment with randomly gen-
erated input spike patterns and (A) the uniform distribution of weights in a
reference neuron w?. (B) Initial weight distribution @' of the synaptic inputs in

n'. (C) Weight distribution w' after 5 learning sessions.

a satisfactory precision and that the learning process converged quickly.

On the other hand, the experiments demonstrated that during learning the
distribution @' reached some stable state (denote w*), similar, but not identi-
cal to w?. This suggests that w* is a local attractor (in the weight space) of
the learning process under the given conditions of the experiments and for the
given target spike patterns. This demonstrates that many local attractors are
possible, w* represents one of them and w? represents another one (according to
ReSuMe rules, see eq.(1)). The initial weight distribution of the learning neuron
determines which attractor is finally reached.

The existence of many local attractors can be explained by realizing that the
definition of some target spike train S¢(¢) expected at the neuron’s output does
not uniquely determine the time course of the membrane potential V,,(¢) in that
neuron. On the other hand, the equations of neuron’s dynamics uniquely define
the relation between V;,,(¢) and the corresponding input weights. Thus there are
potentially many weight distributions w* “generating” the same spike pattern
Se(t).

However, longer S%(t) patterns define more constraints for the possible V,,, (¢)
and thus determine these traces more precisely. In that way also the number of
the corresponding distributions w* is reduced. This effect was observed in our
simulations (not illustrated here). We hypothesize that the number of attractors
can be reduced to a single, global attractor w* = w? only for the very long S%(t)
patterns and in the worst case for the patterns of infinite length.

5 Conclusions

In this paper we demonstrated that SNN trained with ReSuMe can effectively
learn a wide class of input to output transformations and that the trained neu-
rons have the expected generalization property. The positive results point out
to the suitability of the ReSuMe method as a bearing approach for the real-life
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applications in which the spiking neural networks could be effectively trained to
perform the tasks of approximation, classification or control.

Our results are similar to those reported in [7] where authors trained a spik-
ing neuron to reproduce the predefined I/O transformations by applying the
Supervised-STDP method. However, that method has a significant disadvan-
tage resulting from the STDP properties. Namely, STDP always produces bi-
modal distribution of weights, where each weight evolves toward its minimal or
maximal possible value. For this reason it is problematic to obtain intermediate
stable weight distribution during the training process. This problem requires
some special modifications of the learning rules [7]. In contrast, ReSuMe ap-
proach is able to produce stable solution for any arbitrary chosen distribution
of weights, which was demonstrated in our experiments. We also demonstrated
the positive learning results with the neurons driven by both excitatory and
inhibitory synapses.

In our recent work we trained only a single spiking neuron. The natural
direction of the future works is to train more complex structures of spiking
neurons. It would be also interesting to test our approach on the stochastic
neurons and synapses.

References

[1] John Hertz, Anders Krogh, and Richard Palmer. Introduction to the Theory of Neural
Networks. Addison-Wesley, 1991.

[2] Filip Ponulak. ReSuMe - new supervised learning method for Spiking Neural Networks.
Technical Report, Institute of Control and Information Engineering, Poznan University of
Technology, 2005. Available at http://dl.cie.put.poznan.pl/~fp/.

[3] Wulfram Gerstner and Werner Kistler. Spiking Neuron Models. Single Neurons, Popula-
tions, Plasticity. Cambridge University Press, Cambridge, 2002.

[4] Wolfgang Maass. Networks of spiking neurons: The third generation of neural network
models. Neural Networks, 10(9):1659-1671, 1997.

[5] Werner Kistler. Spike-timing dependent synaptic plasticity: a phenomenological frame-
work. Biol.Cybern., 87:416-427, 2002.

[6] Jean-Pascal Pfister, Taro Toyoizumi, David Barber, and Wulfram Gerstner. Optimal Spike-
Timing Dependent Plasticity for Precise Action Potential Firing. arXiv:q-bio. NC/0502037.
v1. 24 Febr. 2005, available at: http://diwww.epfl.ch/~jpfister/papers/Pfister_05a.
pdf.

[7] Robert Legenstein, Christian Naeger, and Wolfgang Maass. What can a Neuron Learn
with Spike-Timing-Dependent Plasticity?, 2005. Submitted for publication.

[8] Andrzej Kasinski and Filip Ponulak. Experimental Demonstration of Learning Properties
of a New Supervised Learning Method for the Spiking Neural Networks. In Proceedings of
the 15th International Conference on Artificial Neural Networks: Biological Inspirations,
volume 3696 of Lecture Notes in Computer Science, pages 145-153, 2005.

[9] The IGI LSM Group. CSIM: A Neural Circuit SIMulator. Technical University, Graz,
http://www.lsm.tugraz.at.

634



