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Abstract. We analyze the dynamics of deterministic recurrent spiking
neural networks with spike-timing dependent plasticity (STDP) and in-
trinsic plasticity (IP) that changes the excitability of individual units. We
find that STDP and IP can synergistically interact to produce complex
network dynamics. These dynamics are quite different from the dynam-
ics of networks that lack one or the other form of plasticity. Our results
suggest that a synergistic combination of different forms of plasticity may
contribute to cortical dynamics of high complexity, and they underscore
the need to carefully study the interaction of different plasticity forms1.

1 Introduction

The Neocortex has been described as a device that mostly talks to itself [1].
Understanding the dynamics of recurrent cortical networks and how these dy-
namics give rise to cognitive functions is a central goal of neuroscience research.
The dynamics of cortical circuits are shaped by a range of plasticity mechanisms
operating at various time scales. Spike-timing dependent plasticity (STDP) is
such a mechanism that has received much attention recently, e.g. [2]. Previous
modeling studies have demonstrated that STDP can be used for the learning of
spike sequences [3, 4, 5, 6]. In addition it has been shown that STDP closely cor-
responds to correlation analysis [7], which is an established system identification
method.

In the brain, STDP is not the only form of plasticity and thus it may be
important to study how various plasticity mechanisms interact. For example, it
was recently shown that the function of Hebbian learning rules for continuous
activation model neurons may be dramatically altered if Hebbian learning is
accompanied by a so-called intrinsic plasticity (IP) mechanism that changes the
intrinsic excitability of a neuron [8]. In particular it was shown that the two
forms of plasticity may synergistically interact to allow the discovery of heavy-
tailed directions in the input. Since IP appears to be a ubiquitous phenomenon

1This work was supported by the gemeinnützige Hertie-Stiftung.
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in the brain, e.g. [9], we are interested in how it may interact with STDP to
shape the dynamics of recurrent networks.

In the following we present a simple model of a recurrent spiking neural
network that combines STDP and IP and we analyze the resulting dynamics
of the network through computer simulations. We find that the two forms of
plasticity interact to create network dynamics of high complexity.

2 The Model

We consider a recurrent network with N binary units. The firing activity of the
network at the discrete time t ∈ N is described by the activity vector x(t) ∈
{0, 1}N , where xi = 1 means that unit i is active (spiking) and xi = 0 means
that the unit is inactive (not spiking). Units are connected through weighted
synaptic connections W, where Wij is the connection from unit j to unit i.
All connections are excitatory (Wij ≥ 0) and self-connections are prohibited
(Wii = 0). We define the pre-activation hi of unit i at time t + 1 as:

hi(t + 1) =

⎛
⎝

N∑
j=1

Wij(t)xj(t)

⎞
⎠ − Ti(t) − max (xi(t), xi(t − 1)) , (1)

where Ti(t) is the threshold of unit i at time t. The max() term introduces a
two-time step refractory period that effectively prevents unit i from becoming
active for the two time steps immediately following a spike. The activity x(t+1)
is defined as:

x(t + 1) = kWTA (h(t + 1)) , (2)

where h(t+1) is the vector of pre-activations, and kWTA is the k-winner-take-
all function that selects the k units with the highest activations and sets their
activity to 1, while setting the activity of all other units to 0. This way there
will be exactly k active units at each time step. Typically we choose k � N .
This ensures population sparseness, i.e., only a small fraction of units are active
at any time. We view the kWTA mechanism as a crude but effective way of
modeling the effect of a network of inhibitory interneurons.

We use a simple model of STDP that strengthens synaptic weight Wij from
unit j to i by a fixed amount ηSTDP whenever unit i is active in the time step
following activation of unit j. At the same time, the reciprocal connection Wji

is weakened by the same amount. Weights are constrained to the interval [0, 1]
by clipping them if they would fall below 0 or grow beyond 1.

We incorporate a simple model of IP that individually adjusts the thresholds
Ti of each unit. A unit that has just been active increases its threshold by a
small amount while an inactive unit lowers its threshold:

Ti(t + 1) = Ti(t) + ηIP (xi(t) − k/N) , (3)

where ηIP is a small learning rate. This rule facilitates life-time sparseness, i.e.,
it drives each unit to be active on average k out of N times. This mechanism is
complementary to the kWTA mechanism that ensures population sparseness.
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Fig. 1: Resulting structure of a network with N = 100 and k = 10 that was
trained with STDP and IP. See text for details.

3 Experiments

3.1 Emerging Network Structure

To characterize the emerging network structure we simulated the model for
10,000 time steps. The initial connectivity was such that 10% of all possible
connections were initially present, and their strength were drawn from a uni-
form distribution over the interval [0, 1]. In this and all following experiments
we used ηSTDP = ηIP = 0.001.

Figure 1-left shows a typical histogram of the weight strength at the end of
the simulation for a model with N = 100 and k = 10. Note that the distribu-
tion is unimodal with most connections having small weights. The tail of the
distribution extends to only slightly above 0.1, which was the maximum initial
value for any weight. This emerging unimodal distribution of weight strength is
quite different from the bi-modal distributions that are frequently observed in
other models of recurrent networks with STDP. In Fig. 1-center we show the
histogram of thresholds Ti. It assumes a unimodal shape centered at zero. The
threshold value of individual units in the network becomes strongly correlated
with the total synaptic drive they receive. This is illustrated in the scatter plot
in Fig. 1-right that shows the threshold value of each unit as a function of the
sum of weights projecting to the unit.

3.2 Dynamics of Individual Units

To characterize the dynamics of the network we simulated it for an additional
10,000 time steps while gathering statistics of the firing patterns. Figure 2-left
shows raster plots of the activity of all units during a 200 time step period. The
average activity of the units over the entire simulation is narrowly distributed
around N/k = 0.1 due to the homeostatic nature of the IP mechanism, as
shown in Fig. 2-center. The distribution of inter-spike intervals (ISIs) of the
units (solid line in Fig. 2-right) is roughly exponential (compare dashed line)
as would be expected from a Poisson process. There is a systematic shortage of
very long ISIs and an abundance of relatively short ISIs, however. The power
spectrum of unit activity is essentially flat (not shown), which is also consistent
with a Poisson process. Note, however, that the dynamics of the network are
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Fig. 2: Firing dynamics of individual units in a network with N = 100 and
k = 10 that evolved under the influence of STDP and IP. See text for details.

completely deterministic.

3.3 Effect of STDP and IP on Network Dynamics

In order to study how STDP and IP contribute to the emerging network structure
and dynamics we simulated networks with STDP and IP present or absent for
varying N and k. Each simulation proceeded in two phases. During the training
phase the network was simulated for 100,000 time steps with STDP and IP either
switched on or off. In the subsequent testing phase we switched off all plasticity
and analyzed the dynamics of the network2.

In the testing phase, the network state is fully described by the activity
x during the last two time steps. The number of possible states is given by
(N !/(k!(N − k)!))2. Since this number is finite, the network has to eventually
enter a fixed point or a limit cycle. Fixed point solutions were never observed,
a fact that is due to the units’ refractory period that effectively prevents them
from being active in two successive time steps. We estimated the number and
length of limit cycles of the network as well as length of transient periods prior
to reaching a limit cycle. Since the number of possible network states can be
astronomically high, it is impractical to exhaustively search for all limit cycles
by enumerating all states. Instead, we initialized each trained network in 100
random initial states and simulated it for 50,000 time steps while recording the
history of states and monitoring for state repetitions that would indicate that
the system had settled to a limit cycle of a particular period. Note that limit
cycles whose period is longer than 50,000 time steps can not be detected by this
method. We investigated how the limit cycle structure depends on N and k by
training and analyzing 10 networks for each of a number of combinations of N
and k values.

Figure 3 summarizes our results. We only present results for networks with
N = 100 and varying k. We also experimented with network sizes of N = 45 and
N = 20 and the results are qualitatively similar, although they appear to get
noisier for smaller N . In Fig. 3-left we plot the average length of the found limit
cycles as a function of k. In the absence of STDP (dashed curves), the length of

2Switching off plasticity during testing allows us to analyze the dynamics for limit cycles
because in this case the system only has a finite number of discrete states.
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Fig. 3: Comparison of average length and average number of limit cycles in
networks with N = 100 and varying k, when trained with different combinations
of plasticity mechanisms. Error bars indicate standard error of the mean. See
text for details.

the found limit cycles tends to quickly grow as a function of k. The presence or
absence of IP seems to play at most a minor role. When STDP is present (solid
curves), however, the results are radically different depending on whether or not
IP is accompanying the STDP. If IP is not present, the system exhibits limit
cycles with very short periods. For k ≥ 5 the system virtually always runs into
a limit cycle of period 3. In contrast, when STDP is accompanied by IP, the
network develops very long limit cycles — even longer than those for networks
without STDP whose synaptic connection matrix is completely random.

The number of distinct limit cycles we found by testing 100 random initial
states of the networks is shown in Fig. 3-right. Again, if no STDP is present,
it makes little difference whether IP is present or not. When STDP is present
without IP, the number of limit cycles grows very quickly with k and saturates
at 100, i.e., every starting state led to a distinct limit cycle. The length of the
transient period, i.e., the time before these limit cycles are reached, tends to be
at most a few steps (not shown), suggesting that these very short limit cycles
fill a large fraction of the state space. When STDP and IP are combined, the
number of distinct limit cycles that were found grows much more slowly with
k, but still faster than for the cases without STDP. In this case the transient
periods become very long and frequently the system does not re-enter any of its
previous states within the testing time of 50,000 steps.

In sum, for networks trained with STDP only, the dynamics are characterized
by a very large number of very short limit cycles that seem to fill a large fraction
of the state space. In contrast, the networks trained with STDP and IP exhibit
very long limit cycles — even longer than networks trained without STDP.
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4 Discussion

We have studied the dynamics of a deterministic recurrent spiking network model
and we investigated how these dynamics are shaped by the presence or absence
of STDP and IP. Our major finding is that the effect of STDP on the network
dynamics was radically different depending on whether it was accompanied by
IP or not. While in the absence of IP, STDP leads to dynamics characterized
by a large number of very short limit cycles, in the presence of IP it leads to a
small number of very long limit cycles — even longer than those of randomly
connected networks (with our without IP).

Our proposed network has a number of interesting features that may con-
tribute to this behavior. It has two mechanisms to maintain homeostasis of its
firing activity: the IP mechanism, which ensures lifetime sparseness of every
unit, and the kWTA mechanism, which enforces population sparseness at every
time. The absence of one or the other mechanism in previous models of recurrent
networks with STDP may have prevented authors from observing similar kinds
of dynamics and the emergence of a unimodal distribution of weight strength
as we have. Note that our network is in fact completely deterministic in con-
trast to most previous recurrent network models with STDP. Nevertheless, it
exhibits very complex dynamics with Poisson-like firing patterns in all units as
also observed in certain randomly connected networks with balanced excitation
and inhibition but without any plasticity [10]. More work is needed to address
how different forms of plasticity may contribute to optimizing the computational
properties of recurrent spiking networks.

References
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