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Abstract. Intrinsic plasticity (IP) refers to a neuron’s ability to regu-
late its firing activity by adapting its intrinsic excitability. Previously, we
showed that model neurons combining IP with Hebbian synaptic plastic-
ity can adapt their weight vector to discover heavy-tailed directions in the
input space. In this paper we consider networks of coupled model neurons
and show how a population of such units can solve a standard non-linear
ICA problem. We also present a simple model for the formation of maps
of oriented receptive fields in primary visual cortex. Together, our results
indicate that intrinsic plasticity may play an important role for learning
efficient representations in populations of cortical neurons.

1 Introduction

Biological neurons regulate their firing activity by adapting their intrinsic ex-
citability. Such intrinsic plasticity (IP) seems to be a ubiquitous phenomenon
in the brain [1]. For example, Desai et al. showed that neurons that had been
prevented from spiking for two days increased their response to current injection
[2]. It is frequently assumed that IP contributes to the homeostasis of a neuron’s
firing activity. Baddeley et al. found that neurons in visual cortical areas show
exponential distributions of their firing rate, which is thought to maximize a
neuron’s information transfer given a fixed energy budget [3]. This is because
the exponential distribution has the maximum entropy among all distributions
of a positive random variable with a fixed mean. It has been speculated that
IP may be instrumental in achieving approximately exponential firing rate dis-
tributions in cortical neurons [4]. We have recently shown that IP that drives
a neuron to exhibit an exponential firing rate distribution can synergistically
interact with Hebbian learning at the synapses. These two processes lead to
the discovery of heavy-tailed directions in the input space [5]. In this paper we
extend these results to populations of neurons with IP. Our specific goal is to
explore the potential role of IP for learning efficient map-like representations for
sensory stimuli.

Computational models of the emergence of sensory representations in the
brain abound. Frequently, they fall into one of two categories: functional models
or mechanistic models. Mechanistic models start from neuroscientific data about
the structure of cortical networks and cortical plasticity mechanisms (cell types,
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connection patterns, plasticity rules, . . . ) which are distilled into simplified
models. These models are trained on actual sensory data or noise patterns
and the learned representations can be compared to neuroscientific data. If
the resulting representations are similar to those found in the brain then this
provides evidence that the processes in the brain have been accurately captured,
but it does not clarify why the brain operates this way or in what sense the
brain’s solution may be optimal. An example of a model of this kind by Linsker
is [6], where V1-style orientation columns are learned from random prenatal
visual noise through Hebbian learning. Later Miller extended this work to learn
many of the various map-structures in V1, and used model neurons that were
somewhat more plausible [7].

Functional models focus on the abstract computational goal of the problem.
For the case of learning sensory representations they start by asking: what is the
optimal way to represent sensory stimuli, e.g. natural images, where optimality
is usually defined with respect to certain statistical criteria (e.g., sparsness, in-
dependence, temporal coherence, . . . ) and additional constraints. Algorithms
are derived to learn the optimal solution to the problem which can again be
compared to neuroscientific data. If the found solution resembles the biological
solution, then this provides evidence that the brain may in fact be trying to
optimize a similar objective function. Through what mechanisms the brain may
achieve this goal is typically not answered, however.

A central idea in many functional models is information maximization. Ac-
cording to this idea, individual neurons should spread out their responses in
dense regions of the input space and compress responses in sparse regions. In
effect, this maps the input to a uniform output distribution, maximizing en-
tropy. Laughlin showed that blowfly Large Monopolar Cells have been adapted
so that their input/output transfer functions nearly optimally represent the con-
trast statistics of their environment [8]. Bell & Sejnowski showed that the same
information maximization principle can be applied to the independent compo-
nent analysis (ICA) problem. They applied their technique to natural images
and found oriented, bandpass sources [9] similar to those observed in V1. Ol-
shausen & Field showed that oriented, bandpass receptive fields also arise when
optimizing image reconstruction error subject to lifetime sparseness constraints
[10]. They imposed a sparse prior on the contribution of each basis function in
a generative model with the intuition that among the space of possible sources
of an image, each one is present only rarely. This intuition is confirmed by Ru-
derman, who showed that bandpass filter responses to natural images follow an
exponential distribution [11].

The model we present in the following attempts to bridge the gap between
mechanistic and functional models. On the one hand, it has a clear connec-
tion to the idea of information maximization [5]. On the other hand, it has a
mechanistic formulation that is biologically plausible because it makes use of
information that is local in time and space, and uses patterns of lateral con-
nections characteristic of neural populations. While similar bridges have been
attempted before, e.g. [12], our model is the first to utilize IP as a fundamental
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mechanism for the learning of sensory representations.

2 Network Model with Intrinsic Plasticity

We consider a network of units learning to represent a sensory input signal x.
The activity of unit i in the network is given by:

yi(hi) = [1 + exp(−aihi − bi)]−1, where hi = x · wi , (1)

where wi is the neuron’s weight vector, and ai and bi are adjustable parameters
of the neuron’s transfer function that are controlled by IP. In particular ai and
bi are subject to the following learning rule:

Δai
(a)
= ηIP

[
a−1

i + hi − (2 + μ−1)hiyi + μ−1hiy
2
i

]
Δbi

(b)
= ηIP

[
1 − (2 + μ−1)yi + μ−1y2

i

]
, (2)

where ηIP is a small learning rate and μ is the desired mean activity of all units.
As derived in [13], this learning rule has the effect of making the distribution
of yi a sparse, approximately exponential distribution, thereby maximizing the
unit’s entropy given a fixed average activity. Note that this rule is local in space
and time, making it physiologically plausible.

Plasticity of the weight vectors wi is modeled with a Hebbian learning rule.
In [5], we considered a single unit learning rule of the form Δw ∝ xy. We
showed that the coupling of IP with this form of Hebbian learning allowed the
unit to discover heavy-tailed directions in the input. To extend this model
to a population of model neurons, we introduce a neighborhood function N as
commonly used in self-organizing maps. The value of the neighborhood function
for neuron i is determined by its activity yi and the activities of all other neurons,
i.e. N (yi;y). Specific forms of N are introduced below. After each stimulus
presentation, the weights are updated according to:

Δwi
(a)
= xyN (yi;y), wi

(b)⇐ wi + ηHebbΔwi

‖ wi + ηHebbΔwi ‖ . (3)

where ηHebb is a learning rate, ⇐ denotes assignment, and the normalization in
(3b) mimics competition between synapses on a neuron’s dendritic tree [7].

3 Experiments

3.1 The “bars” problem

The bars problem is standard non-linear ICA problem introduced by Földiák
[14]. Horizontal and vertical bars are presented on an R-by-R retina. The
presence or absence of a bar is independent of that of any other bars. The
unsupervised learning problem is to learn filters that correspond to the individual
independent components, i.e. the bars. The problem is non-linear because the
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Fig. 1: A population of 20 model neurons has learned all independent sources
in the bars problem. The weight vector of each unit has discovered a single bar.
Parameters were: β = 0.2, ηHebb = 0.01, ηIP = 0.005, and μ = 0.1 .

pixel at the intersection of two bars is just as bright as any other pixel of the
bars, not twice as bright. In our previous work [5], we showed that a single model
neuron with IP and Hebbian learning discovers one of the bars when exposed
to stimuli from the bars problem. Here we use a population of units to learn
the complete problem. We use a retina of 10-by-10 pixels and the probability
of any of the 20 bars occuring in a given stimulus is 10%. Since we want filters
that respond highly when bars are present and not otherwise, the desired mean
firing rate μ is set at 10%. N is chosen to enforce a winner-take-all competition
between the units, so that the maximally activated neuron updates its weight
vector in a standard Hebbian fashion, and all other units update their weight in
an anti-Hebbian manner regulated by a decorrelation parameter β:

Nbars(yi;y) =
{

1 : yi = max(y)
−β : else . (4)

All units update their intrinsic parameters independently, as described in Equa-
tion 2(a&b). Figure 1 shows the parameters used and the results of learning.
With the specified parameters, we found that learning was completely successful
in 19 out of 20 trials. Varying the learning rates ηHebb and ηIP affected learning
little, provided both remained above 0. When μ was 0.05, redundant filters were
learned, and when it was 0.2, multiple bars were represented within single filters.
This suggests that when the true mean of the components is unknown, it may
be a better strategy to choose μ too high rather than too low. This way, all true
sources will likely be captured because individual filters each learn to represent
several sources. Learning substantially worsened when β was less than 0.05 or
greater than 0.3, with effects similar to μ too low or too high respectively.

3.2 Modeling the Emergence of Orientation Maps

Receptive fields of simple cells in V1 are oriented, localized, and bandpass. Neu-
rons are arranged in a columnar fashion that reflects their orientation preference.
For modelling the emergence of orientation columns, we consider our populations
of neurons to be located on a two-dimensional sheet, with neuron i at grid po-
sition (j, k)i ∈ N × N after the fashion of a Kohonen feature map. The most
active unit exhibits a center-surround influence on learning in its neighbors ac-
cording to a difference of Gaussians (DoG) neighborhood function centered at
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Fig. 2: Left: Receptive fields learned from natural image patches. Parameters
were: ηHebb = 0.05, η = 0.01, μ = 0.15, σc = 1, σs = 1.5. Right: Mean
correlation and mean normalized mutual information (2·I(X ; Y )/[H(X)+H(Y )],
6 bins) between firing activity of each unit pair remained very low.

the coordinates of the most activated neuron (j∗, k∗):

Nmap(yi;y) =
1

2πσ2
c

exp
(

(ji − j∗)2 + (ki − k∗)2

2σ2
c

)

− 1
2πσ2

s

exp
(

(ji − j∗)2 + (ki − k∗)2

2σ2
s

)
, (5)

where σc and σs determine the range of the center and surround interaction.
Our inputs were taken from natural images collected by Van Hateren [15]. We

used log-intensity images because these have greater contrast and this transform
is performed in the early visual pathway [15]. We convolved the images with a
difference of Gaussians (DoG) filter to model the center-surround opponency of
neurons in the lateral geniculate nucleus (LGN) [7]. 500 10x10 image patches
were drawn at random from each of 375 images, and were presented once to each
neuron in our population. The input had positive and negative values simulating
populations of ON and OFF cells in the LGN [6].

We used a population of 225 units arranged on a 15x15 sheet. Each unit
had a 10x10 receptive field size, making the population 2.25 times overcomplete.
The results of learning are shown in Figure 2. Learning was robust to changes in
the parameters over a wide range of values. The learned filters exhibit a variety
of orientations, frequencies, and locations. Moreover, they exhibit smooth inter-
polation in local regions. This is reminiscent of the orientation-map structure in
V1. We measured the degree of dependence among firing activities and found
that on average a unit gave only 3% of the maximum possible information about
any other unit in the 2.25 times overcomplete population.

4 Concluding Remarks

Different forms of plasticity are involved in shaping sensory representations in
the brain and it is important to understand how these different mechanisms
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interact. In [5] we developed model neurons that maintain sparse lifetime dis-
tributions through IP while performing Hebbian learning at the synapses. Here
we constructed networks of such neurons whose learning was coupled using a
winner-take-all mechanism or a self-organizing map architecture. In the former
case, we solved a standard non-linear ICA problem, and in the latter we found
maps of Gabor-like receptive fields as seen in primary visual cortex. Pairwise
independence between neurons was well-maintained on average. Our results
suggest that IP may play an important role in the unsupervised learning of
independent, information maximizing representations in the cortex.
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