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Abstract. Learning regulatory networks from time-series of gene expres-
sion is a challenging task. We propose to use synthetic data to analyze
the ability of a state-space model to retrieve the network structure while
varying a number of relevant problem parameters. ROC curves together
with new tools such as spectral clustering of local solutions found by EM
are used to analyze these results and provide relevant insights.

1 Introduction

Learning of complex dynamical biological systems has emerged as a major chal-
lenge in post-genomics since the availability of DNA chips. We focus here on the
learning of gene regulatory networks from time-series of gene expression [1, 2, 3].
Gene regulatory networks behave as a distributed and dynamical system whose
variables are the genes that may regulate each other. Generative approaches
such as dynamical bayesian networks have been developed in order to recover
the structure of such networks. However while many works concern specific sys-
tems in model organisms such as E. coli, S. cerevisiae, it remains quite difficult
to evaluate the ability of such methods to retrieve successfully the structure of
a network. We thus need to study theoretically and empirically the capabilities
and the limitations of our modeling methods. In this work, we use synthetic
data to test one state-space model previously proposed in [4, 5]. We explore the
ability of the model to retrieve the structure of a true network using ROC curves
and area under the curve (AUC) while varying number of training time-series,
length of sequences, noise, sampling-time, and presence of a hidden variable. In
the special case of hidden variable, we found that the learning method is able
to provide local minima solutions that can be gathered into two clusters using
spectral clustering and graph kernel.

2 Learning structure with a state-space model

We study a model of genetic regulation, called Inertial Dynamic Bayesian Net-
work (IDBN), previously introduced in [4, 5]. Due to space constraints, we only
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give a short description of IDBN here and refer the reader to [4, 5] for details
and a discussion of the biological relevance of this model.

Our state-space model represents gene expressions and their derivatives as
an hidden process: {

Xt+1 = AXt + εht
Yt = CXt + εot

, (1)

where Xt is the hidden state of the gene network at instant t corresponding
to the n expression levels of the n genes and their n derivatives, and Yt is the
observed state of the network, composed of all observations of gene expression
levels. εht and εot are isotropic Gaussian noise. Transition matrix A is defined as

A =
[

I I
W − Ω2 I − 2ΩΛ

]
(2)

where I is the identity matrix of size n×n, W = (wij)1≤i,j≤n, Ω = diag(ω1, . . . , ωn)
and Λ = diag (λ1, . . . , λn). C is the projection matrix [I 0]. We make the hy-
pothesis that X1 follows a Gaussian law of mean µ1 and diagonal variance matrix
σ2

1 .I. Parameters can be learned using EM and a MAP approach that allows to
maximize log likelihood while minimizing the norm of wij parameters1 [5].

Structure extraction In our approach we avoid the NP-hard problem of learning
structure in Bayesian network because both structure and dynamics are encoded
in the parameters. In some extent we can say that we delay the problem of
structure identification to a post-processing of the obtained parameters. By
doing this, we assume a strong interpretation of the transition matrix W that
encode interactions.

Given a data set, several runs of EM from random initial conditions may
reach different local solutions, leading to a distribution of the parameters wij .
To extract a structure from these parameters, we make the hypothesis that gene
j regulates gene i if wij is significantly different from zero according to this
distribution. Assuming each wij follows a Gaussian distribution with mean w̄ij

and standard deviation sij , this gives the following z-test rules: (i) w̄ij−γ∗sij > 0
: gene j activates gene i (ii) w̄ij + γ ∗ sij < 0 : gene j inhibits gene i. γ
is a parameter that reflects the confidence of the statistical test. For example,
γ = 1.96 corresponds to a significance level of 0.05. Larger values of γ correspond
to less connected networks.

In our experiments, we evaluate structures independently of γ by using ROC
curves. A ROC curve is obtained by plotting the true positive rate versus the
false positive rate for different values of γ. In our case, the true positive rate is
defined as the proportion of true regulations that are correctly predicted with
their sign2. The false positive rate is the proportion of non regulations that are
wrongly predicted as regulations. A ROC curve is summarized by its area under
the curve (AUC), with larger AUC meaning better performance.

1In all our experiments, the regularization parameter is kept fixed.
2Note that because the signs of regulations are taken into account, the true positive rate

may never reach 1 for a given model even when all interactions are deemed significant (γ = 0).
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Fig. 1: AUC versus the number of time-series (left) and time points (right)

3 Empirical study of IDBN

Our experiments focus on the recovery of the network structure in various condi-
tions. Another interesting criterion to evaluate a model is its ability to produce
similar time series as the true model. Experiments not reported here show that
our models are usually doing very well according to this criterion.

Generation of synthetic data. Our artificial regulatory networks are generated
as scale-free networks that have been found to be relevant to gene networks.
From the network structure, we then generate our parameter set as follows. The
signs of non-zero wij ’s are randomly chosen in {−1, +1} and their magnitude are
drawn from a uniform distribution U(0, 0.04). Other parameters are randomly
drawn from uniform distributions3 until all eigenvalues of matrix A are inferior
to 1 (to ensure the stability of the system). εht and εot follow a standard normal
distribution. The means μ1 of the initial state are sampled from U(−100, 100)
and σ1 is set to 1. The model is then simulated from random initial states to
collect S time-series of T time steps of the expressions corresponding to the N
nodes. AUC values in Figures 1 and 2 are averaged over 10 random networks.

Number of time points and time-series. Because of high experimental costs,
most time-series expression datasets contain only limited data, both in terms of
the number of time points and in terms of the number of different time-series
available for each gene. Hence, it is important that learning algorithms can work
with very few data.

The left graph of Figure 1 shows the evolution of the AUC for networks of 10
nodes when we increase the number of time-series from 1 to 10 (with T = 50).
Clearly, one time-series is not enough to obtain an interesting ROC curve. It
does not put enough constraints on the learning algorithm and thus there are
several solutions in terms of structure that perfectly fit the observed time series.
On the other hand, 3 time-series already yield very good results with an AUC of
0.78. Increasing S above 5 does not bring further improvement with this respect.

3Exact parameter ranges are omitted for the sake of brevity.
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Fig. 2: AUC versus the noise level (left) and the sampling period (right)

The right graph of Figure 1 shows for S = 3 time-series the evolution of the
AUC with T ranging from 10 to 200. The algorithm requires at least 20 time
points to give good results. The AUC does not improve with more than 40 time
points because our system is dampened and returns towards equilibrium.

Noise. Microarray expression data are usually very noisy. To study the effect
of the noise on the performance of our algorithm, we increase the noise level
on observed time-series from 1% to 25% of the average amplitude of the time
series, using N = 10, S = 3, and T = 50. The left part of Figure 2 shows that
performances decrease as the noise increases as expected. However, the decrease
of AUC is quite slow.

Sampling period. Usually, the biologists choose the sampling time on the basis
of their knowledge and the time scale of the phenomenon they want to study.
Learning can only be possible if this sampling time is sufficiently small regarding
the true process. In case of periodic signals, the Nyquist-Shannon theorem
tells us that for a sampling period less than half the eigen period of the signal
there is no loss of information. Although this theorem does not apply to our
dampened oscillatory system, the effect of the sampling period can be observed
with simulations.

To study this effect, we simulated a continuous version of the model with 10
nodes for a duration of 3000 minutes and we sampled the resulting continuous
time series every 1 to 30 minutes over 50 time points. The right graph of Figure
2 shows that the AUC first increases and then decreases with the sampling rate.
50 time points with a rate of 1 does not capture enough information about the
dynamics, which explains the low initial AUC. Good results are obtained with
rates from 2 to 5 but the algorithm does not perform better than random at
10. Inspecting the time series, we observed that the minimal eigen period of the
system precisely corresponds to a rate of 10. Sampling at this rate or higher
leads to a loss of information that prevents reconstructing the dynamics.

Network size and structure. Error bars in Figures 1 and 2 shows that the per-
formance of the algorithm depends heavily on the structure. This is confirmed
by Figure 3 that plots the ROC curves (and their averages) corresponding to 10
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Average ROC curve − AUC = 0.77 ± 0.08
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Fig. 3: ROC curves for 10 networks of 10 genes (left) and 20 genes (right)
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Fig. 4: Left, ROC curves obtained from all matrices and in the two clusters.
Right, hinton graphs of the true weight matrix and the average matrices over
the two clusters

random networks of 10 nodes (left) and 10 random networks of 20 nodes (right),
with T = 50 and S = 3. However, average AUC are quite good in both cases.
It is also interesting to note that doubling the number of nodes does not seem
to affect average AUC and stability of the ROC curves.

4 Learning with hidden variables

One interesting feature of our model is that it can handle hidden variables, i.e.
genes whose expressions are not observed but which influence the dynamics.
However, in general, it is very difficult to retrieve the structure in the presence
of hidden variables. Indeed, different behaviors of the hidden variables may all
explain the behavior of the observed variables. In particular, for every solution,
the solution obtained by reversing the weights implying a hidden variable is
also acceptable. The EM algorithm can not choose between these equally likely
alternatives and thus can get caught in any of the corresponding local optima
depending of its initialization. This suggests that clustering local solutions may
come up with a small set of plausible structures.

To study the ability of our algorithm to retrieve the structure in the presence
of hidden variables, we simulated a random network of 6 genes with one hidden
variable. The ROC curve obtained with S = 3 and T = 50 is given in the left
graph of Figure 4. The result is very bad with an AUC of 0.32. We then apply
clustering techniques on 100 solution matrices W obtained from different runs
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of the EM algorithm. We used kernel spectral clustering with an exponential
graph kernel. The number of clusters was automatically determined using the
ratio of between and within cluster distances. This procedure highlighted two
very clear clusters of solutions. The ROC curves corresponding to the matrices
in the two clusters are given in Figure 4. The first cluster obtains an AUC of
0.31 and the second one a much better AUC of 0.76. Figure 4 compares the
weight matrices averaged over the two clusters (filtered with γ = 0.5) to the
true weight matrix (left). The last column and the last row correspond to the
hidden variable. Clearly, cluster 2 corresponds to the true solution while weight
on the hidden variable are reversed in cluster 1.

So, although it is difficult to retrieve the structure in the presence of hid-
den variables, this example shows that clustering can be used to automatically
determine a small set of possible solutions that can then be presented to the
biologists for further analysis.

5 Conclusion and perspectives

The empirical study carried out in this paper has shown that the algorithm can
provide useful information about the structure from very limited data (a few
dozen time points and a couple of independent time series). The method is
also robust to noise and sampling time to some extent. We have furthermore
proposed a method to circumvent the problem of multiple solutions in the context
of hidden variables based on clustering solution matrices.

While in this study the learned and true model belong to the same family, in
the future, it would be interesting to apply our approach on artificial data gener-
ated from other gene regulation models to check its robustness to the model. We
also intend to use non linear models of regulatory networks, closer to biochemi-
cal processes. In this case, the analysis of the Jacobian matrix will lead to the
structure extraction. We expect that in this case also, the learning algorithm
can come up with different families of solutions. Then clustering of solutions
that was shown to be very relevant with hidden variables could be of use.
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