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Abstract. We first propose a correlation-based blind source separation
(BSS) method based on time-scale (TS) representations of the observed
signals. This approach consists in identifying the columns of the (permuted
scaled) mixing matrix in TS zones where this method detects that a single
source is active. It thus sets very limited constraints on the sparsity of the
sources in the TS domain. Both the detection and identification stages
of this approach use local correlation parameters of the TS transforms of
the observed signals. This BSS method, called TISCORR (for TIme-Scale
CORRelation-based BSS), is an extension of our previous two temporal
and time-frequency versions of this class of methods. Our second contribu-
tion in this paper consists in proving that all three approaches apply if the
(transformed) source signals are linearly independent, thus allowing them
to be correlated. This extends our previous demonstration, which only
guaranteed our previous two approaches to be applicable to uncorrelated
sources. Experimental tests show that our TISCORR method achieves
good separation for linear instantaneous mixtures of real, correlated or
uncorrelated, speech signals (output SIRs are above 40 dB).

1 Introduction

Blind source separation (BSS) methods aim at restoring a set of unknown source
signals from a set of observed signals which are mixtures of these source sig-
nals [1]. Most of the approaches that have been developed to this end are based
on Independent Component Analysis (ICA). They assume the sources to be ran-
dom stationary statistically independent signals, and they recombine the avail-
able observed signals so as to obtain statistically independent output signals.
The latter signals are then equal to the sources, up to some indeterminacies and
under some conditions (especially, at most one source may be Gaussian for such
methods to be applicable if no additional constraints are set on the sources).
Some other BSS approaches, especially based on time-frequency analysis have
also been reported (see e.g. [2]-[7] and references therein). Especially, we pro-
posed in [7] two CORRelation-based BSS methods, i.e. a TEMPoral version
(TEMPCORR) of this method and an extension (TTFCORR) which operates in
the TIme-Frequency plane. Our contributions in this paper are related to these
two correlation-based methods and are twofold. On the one hand, we introduce
a modified version of this type of approaches, called TISCORR since it is based
on a TIme-Scale signal representation (such representations were also used in a
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few reported BSS methods, e.g. [4],[8]). On the other hand, we demonstrate
that this TISCORR approach (and our previous temporal and time-frequency
versions) applies to a wider class of source signals than those which were shown
in [7] to be separable by our TEMPCORR and TIFCORR methods.

2 Problem statement

We assume that N unknown, possibly complex-valued, source signals s;(t) are
mixed in a linear instantaneous way, thus providing a set of N observed signals
x;(t). This reads in matrix form

a(t) = As(t) (1)

where s(t) = [s1(t)...sn()]T and z(t) = [#1(t)...2nx(#)]7 and where A is a
NxN unknown, supposedly constant and invertible, mixing matrix. Its coeffi-
cients a;; may be complex-valued and are assumed to be non-zero hereafter. BSS
would ideally consist in deriving an estimate of the matrix A. It is well known
however that this can only be achieved up to two types of indeterminacies, which
resp. concern the scale factors and order with which the source signals appear in
the outputs of BSS systems. We showed in [7] that these indeterminacies make
it possible to reformulate the BSS problem as follows. Let us denote

si(t) = a1,6(j)50(j) (1) (2)
4,0 (5)

by = —el) 3)
! a1,0(j)

where ¢(.) is a permutation, s’;() are the permuted scaled' source signals and
bi; are the corresponding permuted scaled mixing coefficients. The set of mixing
equations (1) may then be rewritten as

z(t) = Bs'(t) (4)

where s'(t) = [s|(t)...s\(t)]T and B contains the coefficients b;; (note that,
due to (3), the first row of B always consists of 1). Assume that we succeed in
deriving an estimate B of B. Then, by computing the output vector of a BSS
system defined as

y'(t) = B7'a(t) (5)
B~'Bs'(t) (6)

all components y’(t) of this vector are resp. equal to s}(t) (up to estimation
errors), i.e. to the contributions of the (possibly) permuted sources in the first
mixed signal. The BSS approach proposed in this paper precisely aims at esti-
mating this matrix B, then providing the corresponding vector y'(t) of separated
source signals.

I This ”scaling” consists in normalizing the scales of the contributions of each source signal
5x(;y(t) with respect to the contribution of this signal in the first mixed signal. The same
principle may of course may applied to any other mixed signal instead.
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3 Proposed time-scale BSS method

3.1 Time-scale tool

The Time-Scale (TS) representation of the signals® considered in this paper is
obtained by computing their Continuous Wavelet Transform (CWT) [9],[10].
The wavelets involved in the CWT are defined as shifted and scaled versions of
a mother wavelet 1 (t) and read

bral®) = 5z (57) ™)

where 7 is a shift parameter and d is a scale (i.e. dilation/contraction) factor.
The CWT of a complex-valued signal v(t) is then defined by the inner products
of that signal with the wavelets 1, 4(t), i.e.

+o00

wosanar= [ o (S e @

This makes it possible to map the considered signal v(¢) into the time-scale (TS)
plane defined by the parameters 7 and d. Each wavelet coefficient W, (7, d) then
defines the local behavior of the considered signal v(t) around time 7, at scale d
(with an associated frequency proportional to 1/d).

We here use the dyadic version of this transform, which consists in comput-
ing (8) only for scales defined as d = 2/, where j are integers. Moreover, when
applying this transform to discrete-time signals, the set of possible values of T
consists of integers. In other words, 7 is then varied with a step equal to 1, for
each considered value of d.

It should be noted that the CWT is an atom-based, linear, transform. There-
fore, it does not introduce interference terms, unlike energy-based, time-frequency
or time-scale, transforms. It thus keeps the linear ”instantaneous” mixing struc-
ture when applied to the observed signals (1) considered in this paper.

Wy (r,d) = /

— 00

3.2 Assumptions and definitions

Each value of a TS transform corresponds to a single ”TS point”, associated
to: 1) the selected time position 7 and ii) the selected scale d (or the associated
frequency). The BSS method that we propose below uses means associated to
these TS transforms, computed over ”analysis zones” which consist of adjacent
TS points. An analysis zone may have any shape in the TS domain. We here
focus on the case when it forms a ”scale line” (which defines an associated
”frequency line”), i.e. when all its points correspond to the same time position
T and to a discrete set of L adjacent scales dp, with p = 1...L. This set is

2As in our TTFCORR method in [7], we here use a deterministic framework, i.e. either the
original source signals are deterministic, or they are random processes, but in the latter case
we only consider a single realization of these processes (this is what is actually available in
practice). The following description then concerns this single, deterministic, realization.
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denoted D hereafter. Each analysis zone is then specified in terms of the couple
(1, D), which completely defines the part of the TS domain associated to this
analysis zone.

Thanks to the transform applied to the signals and to the shape of the anal-
ysis zones, the associated BSS approach exploits the local behavior of the source
signals around a given time position, at a set of scales situated on a fixed (i.e.
”automated”) and geometric grid. This decomposition is e.g. very well-suited
to the structure of speech signals. This approach is therefore attractive, e.g.
as compared to our previous method based on Short-Time Fourier Transforms
(STFTs), which uses a linear frequency grid and requires the user to select the
STFT parameters.

The proposed BSS method then uses the following parameters, associated to
the above-defined analysis zones. For any signal v(t), whose CWT is denoted
Wy (7,d), the mean of its TS transform over the considered analysis zone is

L
Wor,D) = 7 3 Wulr,dy). )

Similarly, for any couple of signals vy (¢) and v2(t), whose TS transforms are
denoted W, (1, d) and W, (7, d), the cross-correlation of the centered versions of
the TS transforms of these signals over the considered analysis zone is measured:
i) either by the TS local non-normalized covariance parameter

L
Z[Wm (Ta dp) - Wm (Ta D)][sz (Ta dp) - sz (Ta D)]* (10)

p=1

1
Coyvs (Ta D) = i2
or ii) by the corresponding covariance coefficient

Cuy, (1, D)

Cyivs 7,D) = . 11
( ) \/Cv1v1(TaD)Cv2v2(TaD) an

For each analysis zone (7, D), the centered CWT values of any source signal
s;j(t) are equal to W, (1,d,) — W, (1, D). The vector consisting of these values
is denoted Vj; (7, D) hereafter.

Definition 1: a source s;(t) is said to be ”isolated” in an analysis zone if only
this source is such that its centered TS transform is not equal to zero everywhere
in this analysis zone, i.e. if only this source is such that V;, (7, D) # 0.

Definition 2: a source is said to be ”visible” in the TS domain if there exist
at least one analysis zone where it is isolated.

Assumption 1: i) each source is visible in the TS domain and ii) there exist
no analysis zones where the centered TS transforms of all sources are equal to
zero everywhere®.

Assumption 2: for each analysis zone (7, D), the non-zero vectors V;, (7, D)
are linearly independent (if there exist at least two such vectors in this zone).

3 Assumption 1-ii is only introduced for the clarity of the proof in the Appendix but is
not restrictive: in practice, the TS transforms of observed signals containing source and noise
contributions are not strictly zero.
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3.3 The TISCORR method

The BSS method that we introduce in this paper mainly takes advantage of the
above Assumption 1-i, i.e. of the fact that there exist analysis zones where each
source is isolated. These single-source zones should first be detected, so as to
operate inside them. As all observed signals have proportional CWTs in any
such zone, an appealing approach for detecting these zones consists in checking
the TS covariance coefficients ¢;, 4, (7, D) of the observed signals z; (t) and z;(#),
defined by (11). More precisely, a necessary and sufficient condition for a source
to be isolated in the TS analysis zone (7, D) is

|CI1I1'(T7D)| =1 Vi, 2<i<N (]_2)

as shown in the Appendix. It should be stressed that the approach used in
this appendix is more general than the proof that we provided in [7] for the
TEMPCORR and TIFCORR methods, and could also be applied to them in
order to extend the class of sources for which those methods are guaranteed to
be suitable: whereas we assumed the sources to be uncorrelated in [7], we here
only suppose them to be linearly independent (in the TS plane, as defined in
Assumption 2), thus allowing them to be correlated.

Now consider an analysis zone where a source is isolated, say si(¢). The
observed signals then become restricted to

.Tl(t) :aiksk(t) i=1...N. (13)

Again using correlation parameters associated to the CWTs of these observed
signals then makes it possible to identify part of the matrix B. More precisely,
when (13) is met, one derives easily
Gon (D) _ 0 i=2...N. (14)
CI1I1(7-7D) A1k
The set of values thus obtained for all observations indexed by i identifies one
of the columns of B, as shown by (3). By repeatedly performing such column
identifications for analysis zones associated to all sources, we eventually identify
the overall matrix B, which completes the proposed approach. The structure of
the BSS method thus introduced may be summarized as follows.
The pre-processing stage consists in deriving the CWTs W, (7,d) of
the observed signals.
The detection stage consists in detecting the TS analysis zones where

a source is isolated, i.e. where condition (12) is met. To this end, we first con-
sider the analysis zones (7, D) corresponding to all values of 7 and to all half-
overlapping sets D. For each such zone, we compute the mean of |y, 2, (7, D)|
over i, with 2 < ¢ < N. We then order all analysis zones according to decreasing
values of this mean of |cz, ., (7, D)|. The first zones in this list are then consid-
ered as the "best” single-source zones.

The identification stage consists in identifying the columns of B. This is
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wavelet L

4] 8] 12
Morlet 66.3 71.4 76.2
Gaussian 48.9 | 69.0 | 41.8
Gaussian derivative 419 | 56.8 | 55.3
Mexican hat 50.1 | 60.1 | 73.2

Table 1: Output Signal/Interference Ratio, depending on mother wavelet and
number L of time-scale points in analysis zones, for uncorrelated speech signals.

achieved by successively using as follows each of the first and subsequent single-
source analysis zones in the above ordered list. The correlation parameters on
the left-hand side of (14) yield an estimated column of B. This column is kept
only if its distance with respect to all previously identified columns is above a
user-defined threshold, showing that the considered analysis zone does not con-
tain the same source as the previous ones. The identification procedure ends
when the number of columns of B thus kept becomes equal to the number of
sources (this is guaranteed to occur because all sources are assumed to be visible
in the considered data).

The combination stage consists in recombining the mixed signals ac-

cording to (5), in order to obtain the extracted source signals.

4 Test results

We first present tests performed with two artificial linear instantaneous mixtures
of two real continuous speech signals. These signals correspond to different
sentences uttered by different male speakers and are therefore uncorrelated (the
temporal sample covariance coefficient of these overall time series is - 0.0017).
These signals last 2.5 seconds. They were sampled at 20 kHz and rescaled so
that their maximum absolute values are equal to unity. The mixing matrix was

[ ]

Tests were performed for various mother wavelets, and numbers L of TS points
in analysis zones. The CWTs were computed with the Wavelab 802 package
available at http://www-stat.stanford.edu/~ wavelab/ using default parameter
values. The resulting output Signal/Interference Ratios (SIRs) are shown in
Table 1. They are higher than 40 dB whatever the parameter values of our
method. This demonstrates the good separation capability of this approach and
shows that it may also be "automated” in the sense that the above parameters
do not require user tuning to achieve good performance.

We then tested this method with two correlated sources, created as follows.
We used an additional speech signal, from a female speaker. We rescaled it so
that its absolute maximum value is equal to 0.2, and we added it to each of the
previous two male speech signals. The two signals thus obtained were considered
as the sources in this second series of tests and were again mixed according to
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wavelet L

1] 8] 12
Morlet 53.9 | 43.0 | 65.8
Gaussian 1.4 | 55.3 | 43.9
Gaussian derivative 41.7 | 55.3 | 45.9
Mexican hat 0.4 | 55.4 | 49.5

Table 2: Output Signal/Interference Ratio, depending on mother wavelet and
number L of time-scale points in analysis zones, for correlated speech signals.

(15). Unlike classical BSS approaches, our TISCORR method is supposed to
be applicable to these correlated source signals (the temporal sample covariance
coefficient of these overall time series is 0.090). However, due to the addition
of the female speech signal to each male signal, each source considered here
may fill the TS plane to a larger extent than in our first series of tests. This
may reduce the amount and quality of single-source analysis zones and may
therefore somewhat degrade performance as compared to Table 1. This analysis
is confirmed by our test results (see Table 2): the output SIRs achieved here
tend to be lower than in the previous series of tests, but they are still higher
than 40 dB (except in two cases with L = 4, so that such small analysis zones
should preferably not be used).

5 Conclusion

In this paper, we introduced a CORRelation-based BSS approach, which oper-
ates in the TIme-Scale domain and is therefore called TISCORR. This approach
consists in identifying the columns of the (permuted scaled) mixing matrix in TS
analysis zones where this method detects that a single source is active. It should
be noted that, unlike ICA-based BSS methods, our TISCORR approach is in-
trinsically well-suited to (realizations of) non-stationary and/or cross-correlated
sources and sets no restrictions on their gaussianity. We experimentally showed
that it yields good performance for linear instantaneous mixtures of real, corre-
lated or uncorrelated, speech sources. Our future investigations will especially
aim at creating more robust versions of this TISCORR, approach, by using clus-
tering methods for selecting which columns of the (permuted scaled) mixing
matrix are kept, as suggested in [7]. We will also check the performance of a
slighly simpler version of this approach, which uses the non-centered version of
the TS correlation parameters involved in the detection and identification stages.

A Appendix

Taking the CWTs of the scalar mixing equations in (1) and centering them over the considered
analysis zone eventually yields in vector form

N
Ve, (1,D) = aijVs; (7, D) i=1...N. (16)
j=1
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Besides, the TS covariance coefficients ¢z, ;(7, D) of observed signals, defined according to
(11), may then be expressed as

< Vi, (1,D), Vg, (1,D) >

Cx zi(’r, D) = (17)
' Ve (7, D)LV (7, D)

where the notations < .,. > and ||.|| resp. stand for the inner product and vector norm.
Applying the Cauchy-Schwarz inequality to (17) then shows that

with equality if and only if V4, (7, D) and V, (7, D) are linearly dependent.

Let us now analyze this condition in a given analysis zone (7, D), depending on the number
of non-zero vectors Vs, (7, D), i.e. on the number of sources which are active in the considered
analysis zone. Due to Assumplion 1-ii, at least one of these vectors Vs (1, D) is not equal to
zero. If only one of them is not equal to zero, since all mixing coefficients a;; are assumed to
be non-zero, (16) shows that all vectors V; (7, D), with 1 <4 < N, are non-zero and colinear.
Therefore, equality holds whatever ¢ in (18) and the detection condition (12) is fulfilled.

The only case that remains to be considered is then the situation when at least two
vectors Vs, (7, D) are non-zero. It may then be shown easily that if Vi, (7, D) and Vg, (7, D)
were linearly dependent for all ¢, with 2 < ¢ < N, then, due to Assumption 2, all the columns
of the mixing matrix A with indices equal to the indices j of the non-zero vectors Vs, (7, D)
would be colinear. This is not true, since A is assumed to be invertible. Therefore, in the
considered case, at least one pair of vectors (Vy, (7, D), Vi, (7, D)) does not consist of linearly
dependent vectors, so that |cz,«; (7, D)| < 1 and the detection condition (12) is not fulfilled.

As an overall result, condition (12) is fulfilled if and only if exactly one of the vectors
Vs, (r, D) is not equal to zero in the considered analysis zone, i.e. if a source is isolated in that
zone, which yields the detection criterion of the proposed BSS method.
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