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Abstract. Spectral classification, segmentation and data reduction are
the three main problems in hyperspectral image analysis. In this paper we
propose a Bayesian estimation approach which tries to give a solution for
these three problems jointly. The data reduction problem is modeled as
a blind sources separation (BSS) where the data are the m hyperspectral
images and the sources are the n < m images which must be mutually the
most independent and piecewise homogeneous. To insure these properties,
we propose a hierarchical model for the sources with a common hidden
classification variable which is modelled via a Potts-Markov field. The
joint Bayesian estimation of this hidden variable as well as the sources
and the mixing matrix of the BSS problem gives a solution for all the
three problems of spectra classification, segmentation and data reduction
problems of hyperspectral images. An appropriate Gibbs Sampling (GS)
algorithm is proposed for the Bayesian computationand a few simulation
results are given to illustrate the performances of the proposed method
and some comparison with other classical methods of PCA and ICA used
for BSS.

1 Introduction

Hyperspectral images data are often represented either as a set of images xω(r) or
as a set of spectra xr(ω) where ω ∈ {1, · · · , Ω} indexes the wavelength and r ∈ R
is a pixel position [1, 2, 3, 4]. In both representations, the data are dependent in
both spatial positions and in spectral bands. Classical methods of hyperspectral
image analysis try either to classify the spectra xω(r) in K classes {sk(ω), k =
1, · · · , K} or to classify the images xω(r) in N classes {sj(r), j = 1, · · · , N},
using in both cases, the classical classification methods such as distance based
methods (like K-means) or probabilistic methods using the mixture of Gaussian
(MoG) modeling of the data. However, these methods either neglect the spatial
structure of the spectra or the spectral natures of the pixels along the wavelength
bands.

If we consider the data as a set of spectra, then we want to write:

xr(ω) =
K∑

k=1

Ar,k sk(ω) + εr(ω),
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where the sk(ω) are the K spectral sources and each column of the mixing matrix
A is in fact an image Ak(r). The ideal case here would be to obtain an estimate
for A such that each column Ak(r) represents an image where only non-zero
values for the pixels in the regions which are associated to the spectrum sk(ω).
At the other hand, if we consider the data as a set of images xω(r), then we
have:

xω(r) =
N∑

j=1

Aω,j sj(r) + εω(r),

where the sources sj(r) are the N source images and each column of the mixing
matrix A in this case correspond to the spectrum Aj(ω). The ideal case here
would be to obtain an estimate for the sources such that the pixels of each image
sj(r) be non-zero only for the positions in the regions which are associated to
the spectrum Aj(ω).

A priori, one may consider these two problems independently, but we may
also account for this specificity. We may also note that the columns Ak(r) of
the mixing matrix in the first model is related to the sources sj(r) in the second
model and the columns Aj(ω) of the mixing matrix in the second model is related
to the sources sk(ω) in the first model. This becomes still more explicit if we
choose K = N . Then Ar,k = sk(r) and sk(ω) = Aωk and the two equations
becomes equivalent.

In this paper, we propose to consider the data reduction problem as a blind
sources separation (BSS) and use a Bayesian estimation framework with a hi-
erarchical model for the sources with a common hidden classification variable
which is modelled via a Potts-Markov field. The joint estimation of this hidden
variable as well as the sources and the mixing matrix of the BSS problem gives
a solution for all the three problems of spectra classification, segmentation and
data reduction problems of hyperspectral images.

2 Proposed data reduction model and method

2.1 Data reduction model

As explained in the introduction, we propose to consider the data reduction
problem as in equation (1), written in vector form:

x(r) = As(r) + ε(r)

where x(r) = {xi(r), i = 1, · · · , m} is the set of m observed mixed images
(hyperspectral images), A the unknown mixing matrix of dimensions (m, n),
s(r) = {sj(r), j = 1, · · · , n} the set of n unknown components (source images)
and ε(r) = {εi(r), i = 1, · · · , m} represents the errors. Now, if we note by
x = {x(r), r ∈ R}, s = {s(r), r ∈ R} and ε = {ε(r), r ∈ R},
then we can write

x = As + ε
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In the following, we assume that the errors ε(r) are centered, white, Gaussian
with covariance matrix Σε = diag(σ2

ε1 , · · · , σ2
εm

). This leads to

p(x|s, A,Σε) =
∏
r

N (As(r),Σε)

2.2 Sources model

As we mentioned in the introduction, we want to impose to all these sources
s(r) to be piecewise homogeneous and share the same segmentation. This can
be achieved via the introduction of a discrete valued hidden variable z(r) and
by assuming the following:

p(sj(r)|z(r) = k)) = N (mjk, σ2
j k

)

and

p(z(r), r ∈ R) ∝ exp

⎡⎣β
∑
r∈R

∑
r′∈V(r)

δ(z(r) − z(r′))

⎤⎦
z(r) then will represents the common segmentation of the sources and the data.
We also impose mjk = 0 if j �= k and σ2

j k
= .001 if j �= k which try to insure

that each image sj(r) be composed of zeros everywhere except those regions
associated with class k.
Combining the data and the sources models we obtain a hierarchical model :
The sources sj(r) are hidden variables for data xi(r) and z(r) is a common
hidden variables for the sources represneting their common segmentation .

3 Bayesian estimation framework

The first step in the Bayesian estimation approach is to find expressions for
the likelihood p(x|s, A, Rε) and for the sources as we did in previous section.
However, these expressions depend on some hyperparameters θ = {θε, θs} where
θε = Rε and θs = {(mjk, σ2

j k
)}. So, we have to assign p(θ) and also p(A). In the

following we use conjugate priors for all of them, i.e., Gaussian for the elements
of A, Gaussian for the means mjk and inverse Gamma for the variances σ2

j k
as

well as for the noise variances σεi.
When all these priors are appropriately assigned, we can obtain an expression

for the posterior law

p(s, z, A, θ|x) ∝ p(x|s, A, θε) p(s|z, θs) p(θ)

We can then use this posterior law to define an estimator such as Joint Maximum
A Posteriori (JMAP) or the Posterior Means (PM). The first needs optimization
algorithms and the second integration methods. Both are computationally de-
manding. Alternate optimization is generally used for the first while the MCMC
techniques are used for the second. We propose here the following algorithm:
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• First, integrate out s to obtain p(z, A, θ|x) and then estimate z, A and θ
by
ẑ ∼ p(z|Â, θ̂, x) Â ∼ p(A|θ̂, ẑ, x) θ̂ ∼ p(θ|Â, ẑ, x)

• Then, compute the posterior mean of the sources using p(s|ẑ, Â, θ̂, x).

In this algorithm, ∼ represents either argmax or generate sample using or
still compute the Mean Field Approximation (MFA). In the following, we give
detail expressions of the different conditional laws aas well as the details of the
proposed algorithm.

4 Expressions of the a posteriori conditional laws

• p(s|z, θ, x) =
∏

r p(s(r)|z(r), θ, x(r)) =
∏

r N (μ(r), B(r)) with⎧⎨⎩ B(r) =
[
AtΣ−1

ε A + Σ−1
z(r)

]−1

μ(r) = B(r)[AtΣ−1
ε x(r) + Σ−1

z(r)mz(r)]

s(r) is then estimated by its a posteriori mean so s̄(r) = μ(r)

• p(z|A, θ, x) ∝ p(x|z, A, θ) p(z)

where

p(x|z, A, θ) ∝
∏
r

p(x(r)|z(r), A, θ) ∝
∏
r

N (Amz(r), AΣz(r)A
t + Σε)

and mz(r) = (0, 0, 0 · · · , mj , 0, 0), Σz(r) =

⎛⎜⎜⎜⎜⎝
0 0 · · · 0

0
. . . 0 0

... 0 σ2
j 0

0 0 · · · 0

⎞⎟⎟⎟⎟⎠.

• p(A|θ, s, z, x) ∝ p(x|A, s, z, θ) p(A) with p(A) = N (0, Γp) A is esti-
mated by its maximum a posteriori

Â = argmax
A

{p(A|θ, s, z, x)}

Â =

[∑
r

x(r)s̄′(r)

][∑
r

s̄(r)s̄′(r) + B(r) + Γp

]−1

5 Simulation results

The main objectives of these simulations are: first to show that the proposed
algorithm gives the desired results, and second to compare their relative per-
formances. For this purpose, first we start by generating artificially the data
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according to the sources generating model, i.e. first generate the labels z(r) ac-
cording to the proposed Potts model with K classes and parameter α = 2. Then
generate sources s(r) using the conditionals p(sj |zj), and finally generate the
mixtures x(r) using a given mixing matrix A which is generated using spectral
signatures obtained from real AVIRIS hyperspectral data. Finally, we add some
noise to these data with given covariance Σε. Figure 1 shows such an example
with the following parameters: m = 32, n = 4, K = 4. To make comparison, we
use two classical methods of PCA and ICA.

For comparing real valued signals s(r) and x(r), we propose to use the
following Lp distances:
Δs

p = |s − ŝ|p =
∑

r |s(r) − ŝ(r)|p and Δx
p = |x − x̂|p =

∑
r |x(r) − x̂(r)|p for

p = 1 and p = 2.
When the matrix A is available, then we can also use: ΔA

p = |A − Â|p =∑
i

∑
j |Aij − Âij |. However, in most ICA methods, a separating matrix B is

estimated and not A. Then, we use the generalized inverses Bt(BBt)−1 to be
compared with A.
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Fig. 1: Simulation process to obtain a dataset : a) z(r), b) four sources sj(r),
c) four spectral signature associated to each class, d) The data cube x which is
composed of 32 images of 64 × 64 pixels.

(a) (b) (c)

Fig. 2: the four sources estimated by different methods of blind source separation
a) PCA separation result, b) ICA separation result and c) proposed method
separation + segmentation
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(a) (b)

(c) (d)

Fig. 3: a) A subset of real Hyperspectral images taken by AVIRIS (128 ×
128)pixels ×56 spectral band and results of separation b)ACP ( Δx

1 = 7, 2.10−3 ,
Δx

2 = 1, 1.10−1) ,c) ICA (Δx
1 = 9, 9.10−3, Δx

2 = 3, 1.10−1), d) proposed method
(Δx

1 = 7, 3.10−4, Δx
2 = 11, 7.10−3)

6 Conclusion

In this paper, we considered the data reduction problem in hyperspectral images
as a BSS and presented a Bayesian estimation approach with a particular hierar-
chical prior model for the observations and sources which gives us the possibility
to jointly do data reduction, classification of spectra and segmentation of the
images.
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