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Abstract. In this paper, an improvement to the E step of the EM

algorithm for nonlinear state-space models is presented. We also propose

strategies for model structure selection when the EM-algorithm and state-

space models are used for time series prediction. Experiments on the

Poland electricity load time series show that the method gives good short-

term predictions and can also be used for long-term prediction.

1 Introduction

Time series prediction is an important problem in many fields. Applications
include finance, prediction of electricity load and ecology. Time series prediction
is a problem of system identification.

Taken’s theorem [1] ensures that if the dynamic of an underlying system
is deterministic, a regression approach can be used for prediction. However,
many real world phenomena are stochastic and more complicated methods might
be necessary. One possibility is to use a state-space model for predicting the
behavior of a time series. This kind of model is very general and is able to
model many kinds of phenomena.

Choosing the structure and estimating the parameters of a state-space model
can be done in many ways. One approach is to use the EM-algorithm and Radial
Basis Functions (RBF)-networks [2]. The main problem is that the E-step of the
algorithm is difficult due to nonlinearity of the model. In this paper, we apply a
Gaussian filter which handles nonlinearities better than the ordinary Extended
Kalman Filter (EKF) which is used in [2].

The problem of choosing the dimension of the state-space and the number
of neurons is also investigated. This problem is important as too complicated
a model can lead to numerical instability, high computational complexity and
overfitting. We propose the use of training error curves for model structure
selection. The experimental results show that the method works well in prac-
tice. We also show that the EM-algorithm maximizes the short-term prediction
performance but is not optimal for long-term prediction.
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2 Gaussian Linear Regression Filters

Consider the nonlinear state-space model

xk = f(xk−1) + wk (1)

yk = g(xk) + vk, (2)

where wk ∼ N(0, Q) and vk ∼ N(0, r) are independent Gaussian random vari-
ables, xk ∈ Rn and yk ∈ R. Here, N(0, Q) means normal distribution with the
covariance matrix Q. Correspondingly, r is the variance of the observation noise.

The filtering problem is stated as calculating p(xk|y1, . . . , yk). If f and h

are linear this could be done using Kalman filter. The linear filtering theory
can be applied to nonlinear problems by using Gaussian linear regression filters
(LRKF) that are recursive algorithms based on statistical linearization of the
model equations. The linearization can be done in various ways resulting in
slightly different algorithms.

Denote by p̃(xk|y1, . . . , yk) a Gaussian approximation of p(xk|y1, . . . , yk).
The first phase in a recursive step of the algorithm is calculating p̃(xk+1|y1, . . . , yk),
which can be done by linearizing f(xk) ≈ Akxk + bk so that the error

tr(ek) = tr (

∫
Rnx

(f(xk)−Akxk − bk)(f(xk)−Akxk − bk)T p̃(xk|y0, . . . , yk) dxk)

(3)
is minimized. Here, tr denotes the sum of the diagonal elements of a matrix.
In addition Q is replaced by Q̃k = Qk + ek. The linearized model is used for
calculating p̃(xk+1|y1, . . . , yk) using the theory of linear filters. The measurement
update

p̃(xk+1|y1, . . . , yk) → p̃(xk+1|y1, . . . , yk+1)

is done by a similar linearization.
Approximating equation 3 using central differences would lead to the central

difference filter (CFD) which is related to the unscented Kalman filter. How-
ever, by using Gaussian nonlinearities as described in the following sections,
no numerical integration is needed in the linearization. The smoothed density
p(xl|y1, . . . , yk) (l < k) is also of interest. In our experiments we use the Rauch-
Tung-Striebel smoother [4] with the linearized model.

3 Expectation Maximization (EM)-algorithm for Training
of Radial Basis Function Networks

In this section, a training algorithm introduced in [2] is described. The EM-
algorithm is used for parameter estimation for nonlinear state-space models.

3.1 Parameter Estimation

Suppose a sequence of observations (yk)N
k=1 is available. The underlying system

that produced the observations is modelled as a state-space model. The functions
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f and g in equations 1 and 2 are parametrized using RBF-networks:

f = wT
f Φf (4)

g = wT
g Φg, (5)

where Φf = [ρf
1 (x), . . . , ρf

l (x) xT 1]T and Φg = [ρg
1(x), . . . , ρg

j (x) xT 1]T are the
neurons of the RBF-networks. The nonlinear neurons are of the form

ρ(x) = |2πS|−1/2 exp(−
1

2
(x − c)T S−1(x − c)). (6)

The free parameters of the model are the weights of the neurons, wf and wg

in equations 4 and 5, and the noise covariances Q and r in equations 1 and
2. In addition, the initial condition for the states is chosen Gaussian and the
parameters of this distribution are optimized.

The EM-algorithm is a standard method for handling missing data. Denoting
by θ the free parameters of the model, the EM-algorithm is used for maximizing
p(y1, . . . , yT |θ). The EM-algorithm for learning nonlinear state-space models is
derived in [2].

The algorithm is recursive and each iteration consists of two steps. In the E-
step, the density p(x0, . . . , xN |y1, . . . , yN , θ) is approximated and in the M-step
this approximation is used for updating the parameters.

Due to the linearity of the model with respect to the parameters, the M-step
can be solved analytically. The update formulas for the weights wf and wg and
covariances Q and R can be found in [2]. In our implementation Q is chosen
diagonal.

The E-step is more difficult and an approximative method must be used. We
propose the use of the smoother derived in section 2 instead of the extended
Kalman smoother used in [2].

3.2 Initialization

The state variables must be initialized to some meaningful values before the
algorithm can be used. Consider a scalar time series (yt). First the vectors

zt = [yt−L, . . . , yt, . . . , yt+L] (7)

are formed. L is chosen large enough so that the vectors contain enough infor-
mation.

Next the dimension for the hidden states is chosen. Once the dimension is
known, the vectors zt are projected onto this lower dimensional space. This is
done with the PCA mapping [5].

The rough estimates for the hidden states are used to obtain an initial guess
for the parameters of the network.
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3.3 Choosing Kernel Means and Widths

Choosing the centers of the neurons (c in equation 6) is done with the k-means
algorithm [5]. The widths Sj are chosen according to the formula (see [6])

Sj =
1

l
(

l∑
i=1

‖cj − cN(j,i)‖
2)

1

2 I, (8)

where I is the identity matrix and N(j, i) is the ith nearest neighbor of j. In
the experiments, we use the value l = 2.

3.4 Choosing the Number of Neurons and the Dimension of the

State-Space

To estimate the dimension of the state-space, we propose the use of a valida-
tion set to estimate the generialization error. For each dimension, the model is
calculated for different number of neurons and the one which gives the lowest
validation error is chosen. This procedure is repeated to get averaged estimates
which are used for dimension selection.

For choosing the number of neurons, we propose the use of the training error,
which has the advantage that the whole data set is used for training. Usually
there is a bend after which the training error decreases only slowly (see figure 1c).
This kind of a bend is used as an estimate of the point after which overfitting
becomes a problem. To avoid local minima, averaging is used.

Because iterative prediction is used, the one-step prediction error is used for
model structure selection. Instead, it would also have been possible to use the
likelihood.

4 Experiments

The experiments are made with a time series that represents the daily electricity
consumption in Poland during 1400 days in the 90s [7], see figure 1a. The values
1 − 1000 are used for training and the values 1001 − 1400 for testing. For the
dimension selection, the values 601-1000 are kept for validation.

The model is tested using the dimensions 2 to 8 for the state-space. For each
dimension, the validation errors are calculated for different number of neurons
so that the number of neurons goes from 0 to 36 by step of 2 (we use the same
amount of neurons for both networks). To calculate the prediction errors, the
state at the beginning of each prediction is estimated with the linear-regression
filter. The prediction is made by approximating the future states and obser-
vations with the linear-regression approach. For L in formula 7, we choose 10.
The choice is based on the results in [8] which imply that the window size 10
contains enough information for prediction.

For each number of neurons, the training is stopped if the likelihood decreased
twice in row or more than 40 iterations have been made. In figure 1b are the
validation MSE curves calculated by averaging the values for each number of

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

140



a) b)

0 500 1000 1500

0.8

1

1.2

1.4

2 4 6 8
2

4

6

8
x 10

−3

Dimension

V
al

id
at

io
n 

M
S

E

c) d)

0 10 20 30 40
1

1.5

2

2.5

3
x 10

−3

Number of neurons

M
S

E

0 10 20 30 40
2.9

3

3.1

3.2
x 10

−3

Number of neurons
M

S
E

e)

0 10 20 30

0.7

0.8

0.9

1

Fig. 1: a) The Poland electricity consumption time series. b) 1-step prediction
validation errors for dimension selection. c) 1-step prediction errors for dimen-
sion 7. The solid line is the error on the test set and the dashed line the error
on the training set. d) 5-step test error for dimension 7. e) An example of
prediction.

neurons over four simulations and choosing the minimum for each dimension. It
can be seen that a good choice for dimension of the state-space is 7 (even though
the validation error for dimension 6 is nearly as good). The errors are averaged
over four simulations.

The training error curve for 1-step prediction shows clearly that a good choice
for the number of neurons is 6. The test error shows that the model chosen based
on the training error gives good results on short-term prediction.

The chosen model gives quite good but not optimal 5-step prediction result.
We claim that the EM-algorithm optimizes mainly the short-term prediction
performance which can be seen by examining the test error curves. The 1-step
test error curve is much smoother. Thus, an algorithm designed for long-term
prediction would certainly give much better result.

In table 1 are the results corresponding to the averaged prediction over four
simulations. In comparison we have calculated the corresponding results using
linear regression, lazy learning [9] and LS-SVM [8]. As expected the 1-step MSE
of the EM-algorithm is very good, but the 5-step MSE is less good.
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method 1-step MSE 5-step MSE
EM 0.0013 0.0030

linear 0.0021 0.0038
lazy learning 0.0016 0.0026

LS-SVM 0.0015 0.0032

Table 1: Test errors with averaged predictions.

5 Conclusion

In this paper, a new approach to the E-step of the EM-algorithm for nonlinear
state-space models is proposed. We also propose strategies for model structure
selection. The experimental results show that the optimization of the model for
short-term prediction works well but on the other hand the EM-algorithm is not
optimal for long-term prediction. This is because the prediction is iterative with
a model optimized for 1-step prediction.

The linear regression filter uses the structure of the neural network to prop-
agate nonlinearities. Our experiments confirm that this leads to a stable algo-
rithm. Unfortunately, it is difficult to prove theoretical convergence or stability
bounds.

In the future, the cost function should be modified to give better results
on long-term prediction. In addition our approach for the E-step should be
compared to other filtering methods.
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