
A Multiagent Architecture for Concurrent
Reinforcement Learning ∗

Vı́ctor Uc Cetina

Humboldt-Universität zu Berlin - Institut für Informatik
Unter den Linden 6, 10099 Berlin - Germany

Abstract.

In this paper we propose a multiagent architecture for implementing con-
current reinforcement learning, an approach where several agents, shar-
ing the same environment, perceptions and actions, work towards one
only objective: learning a single value function. We present encourag-
ing experimental results derived from the initial phase of our research on
the combination of concurrent reinforcement learning and learning from
demonstration.

1 Introduction

It is well known that reinforcement learning algorithms usually require a pro-
hibitive amount of time to produce optimal and reliable behavior policies. Fo-
cusing on that problem, we present in this paper a multiagent architecture for
implementing agents that learn autonomously through reinforcement learning
and also from demonstrations generated by one or more available teachers. One
key aspect of our approach is the use of multiple agents that concurrently re-
fine a value function. We show that, when several agents are employed to solve
a machine learning problem, the state space is explored in a parallel manner,
allowing with this an acceleration in the learning process. Moreover, if we en-
hance this colaborative learning process with the help provided by teachers, the
number of training episodes needed to produce a good value function can be
reduced remarkably. We provide experimental results that show the viability of
our architecture and also that it is sufficiently general to permit the use of any
kind of reinforcement learning algorithm.

1.1 Reinforcement Learning

Reinforcement learning (RL) is a machine learning paradigm that addresses the
problem of learning a behavior policy through the experience generated by the
agent and its interaction with the environment [7]. In the work reported here,
we used Q-learning [8], a RL algorithm that under some reasonable conditions
is guaranteed to converge and build the optimal value function Q∗(s, a), which
assures us that the agent will always choose the best action from every state.

∗This research work was supported by a PROMEP scholarship and UADY.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

107

1.2 Related work

The idea of enhancing the performance of reinforcement learning algorithms
using domain knowledge provided by a supervisor or teacher has been studied in
recent years by several researchers. Those works that keep more relation to ours
are the following. Lin [2], Rosenstein and Barto [5], Abbeel and Ng [1], Schaal
[6], Mataric [4], and Maclin and Shavlik [3].

All of these approaches are similiar to ours in the fact that they all incor-
porate information generated from teacher’s demonstrations to accelerate the
construction of a value function, which so far seems to be the most effective
way to obtain any significant improvement. Some of them study the way to
extract a model from such demonstrations, others attempt to create what they
call progress estimators to advice the agent about how close it is to a goal state.
However, they do not contemplate in their investigation, how this speed up in
learning could be affected by the employment of many agents. In our research,
we focus on a multiagent approach to learning from demonstration, analyzing
how the number of agents involved can accelerate the whole process.

2 Architecture

Fig. 1: A multiagent architecture for
concurrent reinforcement learning.

Fig. 2: Dynamic grid world.

The multiagent architecture for concurrent reinforcement learning (see Fig-
ure 1) has as main objective to be of practical use for developing reinforcement
learning systems that require a minimum number of training episodes in order
to safely master a specific target behavior. In other words, we want our systems
to learn as fast and reliably as possible. To this end, our approach employs two
strategies. First, we use one or more available teachers that provide demonstra-
tions of how the task to be learned should be performed. These demonstrations
are used to build an initial value function that can be used by the agents since
the beginning of their learning process. We describe this process as constructing
a road map of the state space that will guide the learning agent to goal states.
Second, we use as many agents as possible to further improve the value function

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

108

through a parallel exploration of the state space. They are aimed to refine the
initial road map created by teachers.

The multiagent architecture that we propose in this paper, is intended for ma-
chine learning problems where many identical agents are available. By identical
we mean that such agents have the same set of sensors and effectors. Consider
for example a team of aibo robot dogs learning to perform a specific task in
the Robocup context. Using all the robots at the same time to learn the task
would certainly provide some benefits in the learning rate. Moreover, we might
take advantage from one or more human experts. This is, if we could exploit
the domain knowledge of human teachers, the learning process might be further
accelerated.

Our reinforcement learning approach is centered in the construction of the
value function, whether it is a state value function or a state-action value func-
tion. The construction of the value function is accomplished through implicit
colaboration of the agents taking part in the learning process, with no commu-
nication skills required among agents. All they need to do is to update and
consult the same value function everytime. Although the experiments presented
here were performed using Q-learning, the use of this architecture is indepen-
dent of the RL algorithm, so that other kinds of RL based on Markov Decision
Process are also applicable.

2.1 Teachers

The purpose of using teachers is that we can obtain optimal and useful trajec-
tories to the goal states. This is really valuable especially during early stages
of the learning process when agents without supervision usually waste much
time trying fruitless actions. The process for including example demonstrations
consists of two phases and it works in the following way. We will consider one
teacher to keep the explanation simple.

First, we place the teacher in a complex state st, a state where the path to
the goal state would be very difficult to find out by an agent. Then we observe
the behavior of the teacher through the state space until it reaches the goal state.
We record the transitions of the teacher in the environment as a demonstration
vector Vd of n tuples (st, at, rt+1, st+1). Once we have the demonstration vector,
we continue with the second phase of building the road map. The vector Vd

is used to update the Q-function. The updating step should be performed in
backwards order, going from the last element of Vd to the first one. We can also
repeat the updating step several times. This method allows us to speed up the
refinement of the Q-function [2].

In our experiments, we used only one teacher, and his demonstrations were
applied before the agents started to learn by themselves. However, the architec-
ture allows the interactive updating of the value function by agents and teachers,
at any time of the learning process. This interaction and its effects in the whole
process is subject of another ongoing research.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

109

2.2 Agents

We consider that each agent Agi is a standard reinforcement learner, which
follows a behavior policy πi during the training phase and that it is affected by
a reward funcion R(s, a). Although each agent might follow a different policy,
we decided to use the same for all of them in our experiments, given that in
this paper we are only concerned with the improvement that can be produced
by many identical agents. In contrast, the reward function must be the same
for all the agents, since they will be interacting with the same environment. As
we mentioned before, agents and teachers are needed to work colaboratively in
order to reduce the amount of time required to refine the value function.

3 Testbed

In a grid of 25 × 25 cells, we place a moving ball and m agents. The problem
addressed by the agents is to learn to intercept the trajectory followed by the
ball, before it reaches any of the grid’s edges. We consider that an agent has
succeeded in intercepting the ball when it moves into the same cell the ball moves
in. During each training episode the ball can only follow one direction out of
four: north, east, south or west, as shown in Figure 2, and it can move only one
cell at each step time. When it reaches a grid’s edge, the current training episode
is considered to be concluded. The agents in contrast, can change their direction
at each time step, by choosing one of the following eight possible movements:
north, northeast, east, southeast, south, southwest, west or northwest, see also
Figure 2. In order to make their job more challenging, we allow them to move
only one cell each time, just like the ball. By doing so, we let the agents move as
fast as the ball can move. Therefore, they must perform the minimum number
of incorrect movements in order to reach the ball before the current training
episode is finished.

To define each state of the world, we made the assumption that at any time,
the agent could perceive the position of the ball and its direction. Based on
this information, the agent is able to determine its current state as given by
(bx, by, d), where bx and by are the distances between the ball and the agent, in
the x and y axis respectively, and d is the ball’s direction (see Figure 2).

4 Experiments and Results

Initially, we worked with different numbers of agents and without a teacher. In
this way, we focused our attention on the improvement obtained in the learn-
ing speed, when varying the number m of concurrent learning agents. First,
we trained the m agents during 1000 episodes, where each episode consisted in
placing the ball and m agents in a randomly selected cell on the grid. Also,
the ball was randomly assigned one valid direction. Each episode was concluded
when the ball reached the grid’s edge. After the training phase, one agent, us-
ing the Q-function just generated, was asked to intercept the ball 500 times.
Every time the agent handled to intercept the ball was counted as a success.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

110

 0

 20

 40

 60

 80

 100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
cc

om
pl

is
he

d
ta

sk
s

pe
rc

en
ta

ge

Training episodes

1 agent
3 agents
5 agents
7 agents
9 agents

Fig. 3: Performance curves with different number of agents.

We repeated this experiment 1000 times and averaged the resulting number of
successes. Next, using the average, we calculated the percentage of tasks suc-
cessfully accomplished. The same steps were repeated for 2000, 3000, . . . , 10000
training episodes and the resulting percentages were plotted in Figure 3, where
we can observe how much the percentage of successful tasks is improved when
we increase the number of agents involved in the concurrent learning process.

Another experiment carried out was the comparison between learning with a
teacher and without it, for 1 and 9 agents. For each number of them, we initially
generated 40 example demonstrations of different situations of the world, those
that we considered specially difficult to learn. Then, we updated the Q-function
in backwards order. The results were plotted in Figures 4 and 5. We used
α = 0.5, γ = 0.5, and rewards of 10 in goal states and −1 otherwise.

In Figure 4 we can see that a huge acceleration in the learning process is
obtained when we use a teacher and only one agent. However, as it is evident
in the plot, once the teacher has provided his advice, the agent is incapable to
keep improving the Q-function. The reason for this is that the state space is
significantly big, and one only agent is not sufficient to further improve the road
map initially created by the teacher, at least not with 10000 training episodes.
In contrast, in Figure 5 a different story occurs. After the demonstration by the
teacher, the team of 9 agents keeps improving the Q-function. We believe that
further improvement can be obtained if different policies were followed by each
agent, such that the state space could be explored more efficiently.

5 Conclusions and future work

We have implemented a multiagent system using an architecture for concur-
rent reinforcement learning where all the agents are used to update the same
Q-function at the same time. One teacher provided example demonstrations,
in order to build a road map of the state space. Such map was used then by
the agents to continue learning, avoiding with this, to start from zero knowl-
edge. In other words, they exploited the state map created by the teacher. The
experimental results showed that using more agents to concurrently learn the
Q-function can accelerate and improve the learning during early stages of the

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

111

 0

 20

 40

 60

 80

 100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
cc

om
pl

is
he

d
ta

sk
s

pe
rc

en
ta

ge

Training episodes

1 agent
1 agent + teacher

Fig. 4: Performance curves with 1
agent and 1 teacher.

 0

 20

 40

 60

 80

 100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
cc

om
pl

is
he

d
ta

sk
s

pe
rc

en
ta

ge

Training episodes

9 agents
9 agents + teacher

Fig. 5: Performance curves with 9
agents and 1 teacher.

training phase. Also, we showed that using a teacher that provides demonstra-
tions of the task to be learned, is an effective way to reduce the number of
training episodes needed to obtain a reliable agent’s behavior. We are working
on extending this framework to consider a general function approximator in-
stead of a look-up table as the value function, in order to solve machine learning
problems with continuous state and action spaces.

References

[1] P. Abbel and A. Y. Ng. Exploration and apprenticeship learning in rein-
forcement learning. In Proceedings of the 22nd International Conference on
Machine Learning, 2005.

[2] L.-J. Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, (8):293–321, 1992.

[3] R. Maclin and J. W. Shavlik. Creating advice-taking reinforcement learners.
Machine Learning, (22):251–282, 1996.

[4] M. J. Mataric. Reward functions for accelerated learning. In Proceedings of
the 11th International Conference on Machine Learning, 1994.

[5] M. T. Rosenstein and A. G. Barto. Supervised actor-critic reinforcement
learning. In Learning and Approximate Dynamic Programming: Scaling Up
to the Real World. John Wiley & Sons, 2004.

[6] S. Schaal. Learning from Demonstration, pages 1040–1046. Advances in
Neural Information Processing Systems. MIT Press, 1997.

[7] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[8] C. Watkins. Learning from Delayed Rewards. PhD thesis, University of
Cambridge, 1989.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

112

