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Abstract. We consider a blind separation problem for undetermined
mixtures of two BPSK signals in a multi-path fading channel. We use
independence and frequency diversity of the two source signals to identify
mixture parameters, estimate Pulse Shaping Filters (PSF) and channel
responses, as well as to extract both binary sequences from only one ob-
servation. Presented method uses gradient descent algorithm to directly
adopt the symbols, which are then used as feedback sequence for PSF
roll-off factor identification as well as for channel equalization.

1 Introduction

The problem of Blind Source Separation (BSS) has been intensively studied
in the literature and many effective solutions have been proposed in the case
of instantaneous mixtures (memoryless channel) [1–4] and convolutive mixtures
(channel effects can be considered as a linear filter) [5–9]. Most of the proposed
algorithms deal with an undercomplete case (the number of sensors is equal or
greater to the number of sources). For more sources than mixtures [10–15], the
BSS problem is said to be overcomplete (undetermined) and is ill-posed.

In general, separation of overcomplete mixtures remains still a great chal-
lenge for the scientific community. Even though the methods of identifying
instantaneous mixing coefficients for n sources have been developed [11], they
need at least 2 sensors. The same assumptions limit the method of separating
undetermined mixtures proposed in [10] (two or more sensors).

In our contribution, we present a new idea to deal with the case of one sen-
sor and two sources (undetermined problem). The mixture is considered to be
convolutive (multipath fading channel) and the sources to be linearly modu-
lated digital signals. Such a scenario can be found in a cellular phone reception,
satellite transmissions, as well as in military communications (eg. signal in-
terception, jamming or counter-measure). We propose methods of identifying
mixture parameters, estimating PSFs and channel responses, as well as extract-
ing both source signals. We consider realistic scenario of very small (compared
to signals’ bandwidths) shift between carrier frequencies (eg. shift: 20 Hz, band-
widths: 1600 Hz, sampling frequency: 8000 Hz), a class of raised-cosine PSF,
and real-life fading channels of type Rayleigh and Rice.
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2 Signal Model

Let us consider a linear, convolutive mixture x(t) of two BPSK-type signals

x(t) = s1(t)e
i(ω1t+ϕ1) + s2(t)e

i(ω2t+ϕ2) (1)

where ωk and ϕk are carrier frequencies and equivalent phases (sum of carrier
and mixing coefficient phases), and the source signals sk(t) are defined as

sk(t) = akck(t) ∗
∑

l

dklpk(t − lTk) (2)

where ak are unknown real mixing coefficients, ck(t) are real channel impulse
responses, dkl ∈ {+1,−1} (BPSK case) are equiprobable, independent and iden-
tically distributed (i.i.d.) random sequences, pk(t) are PSFs belonging to a class
of raised-cosine filters, and Tk are symbol durations.

We assume that source signals dkl are independent of each other and carrier
frequencies ωk are distinct and can be estimated [16] or (with some modifications)
[17]. We consider scenario with small (compared to Baud Rates) frequency
shifts (as in intercepting military transmissions in ”double talk mode”) that any
separation method based on signal filtering [18,19] can’t be applied. Finally, we
assume that timing parameters Tk are already estimated [20, 21].

3 Estimation of Equivalent Phases

Using frequency diversity along with the independence between source signals,
the equivalent phases can be estimated using auxiliary signals defined as

Zk(t) = x(t)e−iωkt = sk(t)eiϕk + sl(t)e
i((ωl−ωk)t+ϕl), k, l ∈ {1, 2}, k 6= l (3)

and the mean values of its squares

E{Z2
k(t)} = E{s2

k(t)}ei2ϕk + E{s2
l (t)}E

{

ei2((ωl−ωk)t+ϕl)
}

+ 2E{sk(t)sl(t)}E
{

ei((ωl−ωk)t+ϕk+ϕl)
} (4)

where E{x(t)} = limTo→∞

1
To

∫ +To/2

−To/2 x(t) dt.

Using the independence between the source signals E{sk(t)sl(t)} = 0, and
assuming that differences between the frequencies and/or observation time are
big enough E

{

ei2((ωl−ωk)t+ϕl)
}

= 0, one can write above equation as

E{Z2
k(t)} = E{s2

k(t)}ei2ϕk (5)

so the equivalent phases can be estimated by

ϕ̂k = 1
2 arg

[

E
{

Z2
k(t)

}]

(6)
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4 Separation Procedure

4.1 First Approach

Once we estimated carrier frequencies and equivalent phases, one can downcon-
vert received signal x(t) to obtain another auxiliary variables Xk(t)

Xk(t) = x(t)e−i(ωkt+ϕk) = sk(t) + sl(t)e
i((ωl−ωk)t+ϕl−ϕk) (7)

Using the fact that original signals sk(t) are 1D (real signals) and the observa-
tion x(t) spans 2D complex plane, the separation problem can be resolved by
decomposing auxiliary signals Xk(t) into its imaginary parts

ℑ{Xk(t)} = sl(t) sin ((ωl − ωk)t + ϕl − ϕk) (8)

then, by its simple inversion

ŝ1(t) =
ℑ

{

x(t)e−i(ω2t+ϕ2)
}

sin((ω1 − ω2)t + ϕ1 − ϕ2)
(9)

ŝ2(t) =
ℑ

{

x(t)e−i(ω1t+ϕ1)
}

sin((ω2 − ω1)t + ϕ2 − ϕ1)
(10)

which exists excepted the particular instants of time

t0(k) = (kπ + ϕ1 − ϕ2)/(ω2 − ω1), k = 0, 1, 2, . . . (11)

4.2 Objective Function

To avoid implementation problems at asymptotic points defined by (11), we pro-
pose an objective-function-based approach to separate the sources. To explain
this idea, let us suppose that second signal s2(t) is known. In such case, one
can subtract it from the received mixture x(t), and then make a downconversion
with a complex exponential e−i(ω1t+ϕ1) to obtain a real variable ε(t)

ε(t) = (x(t) − s2(t) × ei(ω2t+ϕ2)) × e−i(ω1t+ϕ1) = s1(t) (12)

In a real-life scenario, we have no idea about the signal s2(t), and additionally,
we have to deal with a noisy case

x(t) = c1(t) ∗ p1(t) ∗ d1(t)e
i(ω1t+ϕ1) + c2(t) ∗ p2(t) ∗ d2(t)e

i(ω2t+ϕ2) + n(t) (13)

where sk(t) = ck(t) ∗ pk(t) ∗ dk(t) is a simplified notation for signal filtering, and
n(t) is complex, Additive White Gaussian Noise (AWGN) with a variance σ2.
In this case, equation (12) becomes

ε(t) = (x(t) − ŝ2(t) × ei(ω2t+ϕ2)) × e−i(ω1t+ϕ1)

= s1(t) + [s2(t) − ŝ2(t)]e
i((ω2−ω1)t+ϕ2−ϕ1) + n′(t) (14)
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where n′(t) is a downconverted version of the original white noise n(t).
By taking imaginary part of this relation, and by computing its variance

(block V{ℑ{∗}} in the diagram 1), one can define the following objective function

Q(t) = V{ℑ{ε(t)}} = [s2(t) − ŝ2(t)]
2 sin2 ((ω2 − ω1)t + ϕ2 − ϕ1) + σ2 (15)

which reaches its minimum Qmin = σ2 when ŝ2(t) = s2(t) for t 6= t0. For values
t = t0 (cf. equation (11)), the objective function Q(t) doesn’t depend on ŝ2(t)
and can’t be used to find correct estimates.

+
V{ℑ{∗}}

SEQ2

ŝ2(t)
PSF2

CMA

≈

≈

×

×
∑

−

ei(ω2t+ϕ2)

ε(t)

e−i(ω1t+ϕ1)

x(t)

C2(ω)

d2

Fig. 1: Scheme of the proposed algorithm.

4.3 Algorithm Implementation

Practical application of the objective function Q(t) to find the estimate of the
source signals ŝk is schematised in the diagram 1.

Firstly, we fix roll-off factor α = 0.4 for the raised-cosine filter [22] (block
PSF2 in the diagram), and we use the objective function Q(t) to adopt 8 first
symbols (block SEQ2 in the diagram). It should be noted that we adopt filtered
sequence (binary sequence convolved with a channel: ck(t) ∗ dk(t)) directly, and
we use some kind of redundancy in the data (we adopt 8 real numbers, whereas
objective function is calculated using 8 ∗ Fs/Fd (Fs – sampling frequency; Fd –
Baud Rate) samples. To adopt the sequence we use standard Stochastic Gradient
Descent (SGD) algorithm [22, 23], which converge for any t 6= t0 (quadratic
function of ŝk(t)). For t = t0, the algorithm doesn’t change the initial sequence
(Q(t) = Qmin so adaptation doesn’t take place).

Next, to speed up the computations, we adopt remaining sequence by adopt-
ing 3 symbols at a time (1 current symbol and 2 preceding). After all symbols
were estimated (128 according to our contract specifications), we use the objec-
tive function once again to adopt the roll-off factor α of the PSF. Finally, we
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apply Constant Modulus Algorithm (CMA block in the diagram) [24] to equal-
ize the channel (C2(ω) in the diagram) and to find estimate of the initial binary
sequence (d2 in the diagram).

To find the second binary sequence, we apply second, identical (excepted
the frequencies used to downconvert respective signals) branch (in the diagram
only the first branch was visualised) and we make all the computations in par-
allel. Experimental results have confirmed that using only 8 symbols in the first
step, we are able to correctly initialise the algorithm, and that the PSF can be
sufficiently identified after all symbols were processed (division of adaptation
procedure into two steps: symbol adaptation with guessed PSF, and PSF adap-
tation with estimated symbols). It should be noted that this algorithm is quite
time consuming (≈ 60 s on Pentium 4 HT with 3 GHz clock and 512 MB of
RAM) so at the current stage, its real-time implementation is impossible.

5 Conclusions and Perspectives

We consider an undetermined problem of blind separation of two BPSK signals
from a convolutive mixture (multi-path fading channel). We use independence
and frequency diversity of two source signals to identify mixture parameters,
estimate PSFs and channel responses, as well as to extract both binary sequences
from only one observation.

It should be noted that the final algorithm is still ”under construction”, and
at the current stage we are unable to give any comparison with existing methods
nor show the results of exhaustive simulations (eg. Bit Error Rate (BER) as a
function of Signal to Noise Ratio (SNR)). Currently, we are working on exten-
sion of the developed algorithm to get around with theoretical limitations (cf.
equations (9), (10), and (11)), i.e. using estimated PSFs and channel responses
to regenerate the original source signals, than apply an objective function (which
uses both signals) to readopt original binary sequences. Experimental results,
case of general, linear digital modulations (dkl ∈ C), as well as complex channels
(phase shifts taken into considerations) are our current occupation and are the
subject of a future publication.
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