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Abstract. Quantifying the success of the topographic preservation
achieved with a neural map is difficult. In this paper we present Topo-
logical Correlation, Tc, a method that assesses the degree of topographic
preservation achieved based on the linear correlation between the topo-
logical distances in the neural map, and the topological distances in the
induced Delaunay triangulation of the network nodes. In contrast to pre-
vious indices, Tc has been explicitly devised to assess the topographic
preservation within neural maps composed of many sub-graph structures.
The Tc index is bounded, and unequivocally identifies a perfect mapping,
but more importantly, it provides the ability to quantitatively compare
less than successful mappings. The Tc index also provides an indication of
the maximum number of nodes to use within the neural map.

1 Introduction

Topographic clustering algorithms are grouped under the general label of neural
maps, and all use graph structures to build a representation of the input space:
a well-known example is the SOFM [1]. We are interested in neural maps that
designate clusters in the data with discrete sub-graph structure in the neural
map, such as the models generated by the Growing Neural Gas (GNG) [2] and
Growing Cell Structures (GCS) [3] algorithms. A review of the literature showed
that none of the current cluster validity indices were suitable for determining the
success of the clustering produced with these algorithms, and this motivated the
work presented in this paper.

2 The Measurement of Topographic Preservation

The literature is rich in definitions of topographic preservation measures, e.g.,
see [4, 5, 6], and many others. The measures proposed in the literature use var-
ious combinations of metric, rank and topological measures of similarity. These
measures were shaped by the differing interpretations that researchers apply to
defining the topography of a neural map, and these approaches contain interest-
ing ideas. However, most of these measures focus on the problem of determining
the most appropriate dimensionality of a regular lattice of nodes, and whilst the
use of such a lattice of nodes is popular, there are topographic mapping tech-
niques that are not restricted to either a prespecified or fixed dimensionality.
Moreover, the topographic preservation metrics assume that the neural map is
a single graph, that has no sub-graph structure, and none explicitly specify how
to measure distances in the neural map between the disconnected sub-graphs.
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Some of these measures only give an indication of topographic preservation er-
rors within immediate neighbours, and take no account of larger topographic
preservation errors which may limit their usefulness in identifying gross viola-
tions in topographic preservation. The measure of topographic preservation we
present in the next section, successfully addresses these problems.

3 Topological Correlation

We now introduce our measure of topographic preservation, the Topological Cor-
relation index, Tc. The concept of topological neighbourhood (i.e., adjacency)
is central, in our opinion, to what constitutes a natural cluster. The measure-
ment of distance by considering topological relationships between those Voronoi
polyhedra that contain data points (the masked Voronoi polyhedra [7]), rather
than the full Voronoi polyhedra, has an intuitive appeal, as the neighbourhood
relationships between network nodes are derived through the data distribution.

The Tc index provides an quantitative method for the evaluation of the suc-
cess of a topographic mapping. It achieves this by calculating the linear corre-
lation between two distances. The first distance dV is the topological distance
(i.e., path length) in the induced Delaunay triangulation [7] of the positional
vectors in the input space. The second distance dG is the topological distance
in the the network graph. Hence, Tc is measuring the correlation between two
measures of neighbourhood adjacency. The Tc index is given by:
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where dG and dV are the mean of the entries in the lower half of the dG and dV

distance matrices, given by dG =

n∑
i=2

i−1∑
j=1

dG(ij)

n(n−1)/2 and dV =

n∑
i=2

i−1∑
j=1

dV (ij)

n(n−1)/2 respec-
tively. Furthermore, dG(ij) and dV (ij) are the minimum path lengths between
two graph nodes i and j, in the network graph and the ideal induced Delaunay
triangulation of the network nodes. The use of minimum path length as the
measure of topographic similarity allows the index to indicate minor deviations
in topological preservation. By using zero for either or both dG and dV where
no path exists, it provides the ability to highlight regions of the graph where
paths exist between sub-graph structures where they should not, and vice-versa.
If there is no path between i and j, then d(ij) is zero, and thus d(ij) is a pseu-
dometric as it fails to satisfy the identity of indiscernables axiom of metricity.
The Tc index is bounded in the range Tc ∈ [−1, 1], and is interpreted as other
correlation coefficients, viz, Tc = 1 is indicative of a perfect positive linear corre-
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Fig. 1: Examples of the measurement of topological correlation, Tc. The graph in
the left column is an example perfect topological preserving map against which
some erroneous topological maps (center column) are measured. The Tc between
the perfectly topological preserving map and the erroneous topological maps is
shown in the right column.

lation, Tc = −1 is indicative of a perfect negative linear correlation, and Tc = 0
indicates that no linear correlation exists.

A simple example of the application of the Tc index is shown in Fig. 1. It is
clear from this example that minor topological preservation errors such that the
correct large scale sub-graph structures are identified, but which may still contain
inappropriate edge structure (e.g., the upper graph in the center column of
Fig. 1) are indicated with a small deviation from a perfect correlation. But large
scale errors, such that the correct sub-graph structure is lost (e.g., the remaining
graphs in the center column of Fig. 1), produces much a larger deviation from a
perfect correlation. Used in isolation, the Tc index does not provide a measure of
clustering quality. What it does provide is the ability to quantify the suitability
of a network graph structure in relation to the topologically ideal graph for a
given set of data. When combined with a measure of the quality of the spread
of the network nodes, we suggest that the quality of a clustering scheme can be
evaluated. This combination of Tc and quality of the network node spread could
be combined in some ad-hoc fashion to quantify the success of a topographic
mapping, but we take the view (as do [8]) that an investigator can draw their
own conclusions from the two separate results.
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Tc = 0.068

sse = 0.0091
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Fig. 2: A comparison of the Topographic Function, Φ, and the Topological Cor-
relation, Tc, on a complex data-manifold. In i), the results of a GCS network can
be seen. The network graph contains 6 sub-graphs, whereas the induced Delau-
nay triangulation indicates that a continuous graph is appropriate for these po-
sitional vectors. The Topographic Function indicates errors by taking a non-zero
value in its plot. For this network graph it shows a large number of topographic
errors in Φ(+k), and a smaller number of errors in Φ(−k). The Tc index of 0.068
reflects the inappropriate structure of the network sub-graphs. In ii), the results
of clustering with a 7x7 SOFM can be seen. The induced Delaunay triangulation
for these positional vectors suggests that a single graph is appropriate (which, of
course, the SOFM naturally fulfills), but the Topographic Function shows errors
in both Φ(+k) and Φ(−k). The Tc index of 0.500 reflects the large number of
topological errors. In iii), the results of clustering with a GNG network with a
maximum size of 49 nodes can be seen. The network graph is an exact match
for the induced Delaunay triangulation, and this is reflected in both Φ(k) that
shows no error for all values of k, and in Tc which reports a perfect positive
linear correlation.
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4 Evaluation

This section reports the findings of an evaluation of the performance of the
Topological Correlation index against the Topographic Function [6]. The Topo-
graphic Function also measures similarity relationships within the data-manifold
with a topological neighbourhood based on the induced Delaunay triangulation.

Using the GNG, GCS and SOFM algorithms, we assessed the performance
of Tc on a complex data-manifold consisting of 1080 elements arranged across
three distinct, but connected regions, embedded in �2. The first region is a
2-dimensional rectangular uniform distribution. This leads into a 1-dimensional
sine wave that extends for approximately 4π radians. This leads into a elliptical
path of data that has been extended into two dimensions with the addition of
noise. The results are shown in Fig. 2, and are described in the figure caption.
It is interesting to note that sub-figure iii), illustrates the equivalence of the
Topographic Function and the Topological Correlation in the case of a perfect
topology preserving mapping.
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Fig. 3: The Tc index of GNG clustering of a 140 element image data set with
varying maximum network sizes. In this case, the GNG networks were unable
to satisfactorily distribute the nodes of networks larger than 100 nodes, and we
consider that these data form approximately 17 natural clusters.

A very important property of the Tc index is its ability to indicate whether
the neural map is composed of too many network nodes. Many neural map
algorithms either require the number of nodes to be specified prior to training,
or dynamically insert nodes to reduce the estimation criterion. The upper bound
for the number of network nodes should be equal to the number of elements in
the data set, and for clustering it should (sensibly) be less. As the network size
approaches this upper bound, achieving full coincidence of the data and network
positional vectors is difficult, and—even with soft competition and other node
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distribution techniques—it is very likely that there will be regions of the input
data that have too few representative nodes, and there will be regions of the input
space that have too many representative nodes. The regions of the input data
that have too many representative nodes cause topological errors, that typically
manifest as small scale path-length violations. Fig. 3 shows the Tc results for
the GNG clustering of a 140–element image data set. This box-and-whisker plot
clearly shows that the network size should be limited to less than 100 nodes to
produce clusters with a high degree of topological correlation.

We have successfully applied Tc to the task of measuring the quality of clus-
tering a bitmap image data set and a time-series of stock market share closing
prices.

5 Conclusions

The Topological Correlation index, Tc, is a new method for determining the de-
gree of topographic preservation in neural maps. The Tc index is bounded, and
unequivocally identifies a topology preserving mapping in neural maps that are
composed of either a single graph or many sub-graph structures. A very impor-
tant property of the Tc index, is its ability to indicate the maximum number of
network nodes with which a topology preserving neural map can be generated.
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