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Abstract. A new gene selection method capable of selecting more than
one gene at a time is introduced. This characteristic contrasts it with al-
most all known methods assuming that there are no interactions between
genes. The only exception is the pairwise gene selection method recently
proposed by Bø and Jonassen [3]. Motivated by this method, we compare
it and ours. Classification into healthy tissue and cancerous tumour is
studied, where gene selection finds gene subsets well suitable for discrimi-
nating between these two classes.

1 Introduction

Microarrays are used to obtain expression levels for thousands of genes at once.
They can greatly help in studies of different diseases at a molecular level and
in design of new drugs preventing or curing these diseases. As a result of mi-
croarray experiments, gene expression matrices are produced. These matrices
consist of many thousands of columns corresponding to genes whereas the num-
ber of rows, associated with the number of samples taken from patients, rarely
exceeds a hundred. We consider the case when the samples are labelled (e.g.
healthy/diseased). Thus, the task is to find sets of genes discriminating well be-
tween classes. To accomplish this task, various classifiers are employed in order
to perform class prediction for new data by using the identified genes. Since
gene expression data has many more attributes (features) than samples, many
attributes can be safely removed since they are either noisy or irrelevant for
class prediction. Hence, attribute selection is typically applied in order to find
a small subset of the original attributes allowing good discrimination between
experimental classes.

A vast majority of gene selection methods treats genes in isolation from each
other, meaning that there are no interactions and interdependencies between
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genes. However, the recent results in molecular biology prove the opposite.
Based on them, Bø and Jonassen proposed a pairwise gene selection method
in [3] and demonstrated on two public datasets that evaluating pairs of genes
reveals what cannot be discovered if genes are analysed separately from each
other.

Inspired by [3], a new gene selection method capable of selecting more than
one gene at a time is introduced in this paper1. This characteristic contrasts it
with all but one known methods (the only exception is [3]). However, whereas
[3] can select genes in pairs, our method goes one step further; besides pairs,
it can also select triples and higher order combinations of genes if desired. In
addition, many methods require to pre-define the number of genes to be found,
which implies one extra parameter to handle. Unlike the others, including [3] as
well, our method automatically terminates when classification accuracy (acting
as the objective function) achieved on the current subset begins to decrease.
This happens because our method belongs to the wrapper model of feature
selection while [3] is the filter model. In other words, unlike [3], our method
carries out a search for a good subset using the induction algorithm itself as
a part of evaluation, i.e. attribute selection is wrapped around the induction
algorithm. Cross-validation (either leave-one-out or n-fold) is used to evaluate
the current subset of attributes [1, 3, 4, 7, 8]. As was pointed in [7], “the
disadvantage of the filter approach is that it totally ignores the effects of the
selected feature subset on the performance of the induction algorithm”. As
a result, the filter model can find attributes that interact with the induction
algorithm’s bias counterproductively as remarked in [4].

2 Hillclimbing in attribute selection

Hillclimbing is one of the best known procedures for sequential attribute selec-
tion. Greedy algorithms such as backward elimination (BE) and forward selec-
tion (FS) implement so called unidirectional hillclimbing, i.e. attributes once
added (removed) cannot be later deleted (added). FS starts with the empty
subset and adds attributes one-by-one. At each step, the attribute yielding the
best performance (e.g. lowest cross-validation error) of the current subset is
added. BE starts with all attributes in the subset and removes them one at a
time. At each step, the attribute whose removal leads to the best performance
of the current subset is removed.

FS and BE algorithms can be improved by bidirectional hillclimbing when
at each step the algorithm greedily adds n1 attributes or deletes n2 attributes
as long as accuracy does not degrade. We will call bidirectional hillclimbing
the AdDel algorithm. The advantage of AdDel compared to either FS or BE is
that one or several previously deleted (added) attributes can be brought back to
(removed from) the subset if the accuracy of the induction algorithm increases.

1Though there are attribute weighting methods like [6], weighting all attributes in parallel
according to their relevance for classification, we do not consider them here since they typically
do not take into account attribute interaction.
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This advantage was stressed in several works [4, 8]. Another advantage of either
hillclimbing procedure is that it can automatically determine the number of
useful attributes, i.e. the user does not have to specify this parameter in advance
in contrast to many filtering approaches.

3 GRAD algorithm

GRAD is an extension of AdDel applied to subsets of attributes instead of indi-
vidual attributes. We call these subsets granules, hence the name ‘GRAD’, i.e.
GRanular AdDel. GRAD is the wrapper method of feature selection involving
two main steps.

• Form individual granules and the working set of granules.

Step 1. Given n original attributes, rank individual attributes according
to their prediction accuracy as measured by a classifier D.

Step 2. Select top n1 attributes from the ranked list. They form 1-
granules.

Step 3. Form all possible combinations of k out n1 attributes, where k =
2, . . . , kmax. Thus the number of combinations of attributes is equal
to

(
n1
k

)
given k.

Step 4. For each k, k = 2, . . . , kmax, rank all
(
n1
k

)
combinations according

to their prediction accuracy as measured by a classifier D.

Step 5. For each k, k = 2, . . . , kmax, select top nk out
(
n1
k

)
combinations

of attributes from the ranked list. They form 2-granules, . . ., kmax-
granules.

Step 6. Form the working set consisting of (
∑kmax

k=1 nk) granules, each
containing k attributes, where k = 1, 2, . . . , kmax.

• Run AdDel on the working set of granules. A list of relevant granules is
empty.

Step 7. FS step: add (one-by-one) �1 best granules to the list of relevant
granules based on prediction accuracy of a classifier D.

Step 8. BE step: delete (one-by-one) �2 (�2 < �1) least relevant granules
from the list of relevant granules based on prediction accuracy of a
classifier D.

Step 9. Measure prediction accuracy. If it decreased compared to the
previous FS/BE steps, save the list of relevant granules and halt;
otherwise go to Step 7.

In this work, D is the weighted k-nearest neighbour (k = 1, 3, 5). This
choice was motivated by the fact that though it is known that this algorithm is
sensitive to irrelevant attributes [1], it does not have parameters to tune, which
is desirable if a large number of attribute subsets has to be evaluated as in our
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case. Weights are associated with the original attributes. The ith weight is
equal to the number of times the ith attribute appears in the list of relevant
granules after halting GRAD. Hence, weights reflect importance or relevance of
attributes: the higher weight, the more relevant attribute.

Given two n-dimensional patterns x and y, the similary between them is
determined by the following formula:

√√√√
n∑

i=1

wi(xi − yi)2 =

√√√√
n∑

i=1

(
√

wixi −√
wiyi)2 ,

where wi is the weight of the ith attribute.
Prediction accuracy is measured by means of leave-one-out cross-validation

(LOOCV).

4 Method of Bø and Jonassen

This filtering method evaluates how well a pair of attributes in combination dis-
tinguishes two classes. First, each pair is evaluated by computing the projections
of the training data on the diagonal linear discriminant (DLD) axis when using
only two attributes constituting this pair. Then the two-sample t-statistic is
computed on the projected points and assigned to a given pair as its score. Bø
and Jonassen proposed two variants of attribute selection based on pair scores,
called ‘all pairs’ (exhaustive search) and ‘greedy pairs’ (greedy search).

The all-pairs variant targets all possible pairs of attributes. First, all pairs are
sorted in descending order of their score. After that, the pair with the highest
pair score is selected and all other pairs containing either attribute included
in this pair are removed from the sorted list of pairs. Then the next highest-
scoring pair is found from the remaining pairs and all other pairs containing
either attribute in this pair are removed from the list, and so on. This procedure
terminates when the pre-specified number of attributes is reached.

Since the all-pairs variant is computationally demanding, an alternative eval-
uating only a subset of all pairs is proposed (greedy pairs). The greedy-pairs
variant first ranks all attributes based on indivudual t-score. Next, the best
attribute ai ranked by its t-score is selected. Among all other attributes, the
attribute aj that together with ai maximises the pait t-score is found so that ai

and aj form a pair. These two attributes are then removed from the attribute set
and a search for the next pair is performed until the desired number of attributes
is selected.

5 Experiments

We chose the dataset of the expressions of 822 genes in 74 samples. Its de-
scription can be found in [5]. The distribution of normal and cancerous samples
is imbalanced with the bias toward the latter (24 samples are normal while 50
samples are cancerous).
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For Bø and Jonassen’s method, the number of attributes to be selected was
set to 2, 4, 6, . . . , 100.

For GRAD, we used kmax = 3, �1 = 10, �2 = 5, n1 = n2 = n3 = 50. Settings
for �1 and �2 reflect the fact that the number of selected genes should not be too
small in order to achieve high generalisation accuracy. Though bidirectional hill-
climbing can better cope with local optima than its unidirectional counterparts,
the former cannot, however, totally avoid them. This implies that GRAD can
typically halt after few FS/BE steps as was usually observed in our experiments.
This effect prevented GRAD to select too many attributes, which is desirable
from the biological point of view. To validate feature selection, 5-nearest neigh-
bour was used.

LOOCV was used with both gene selection and classification. First, gene
selection was done for each cross-validation (CV) subset, where LOOCV error
was utilised in order to assess performance. Then genes selected for all CV
subsets were gathered into a single histogram having n entries, equal to the
number of genes. Using this histogram and a user-specified threshold T , rare
genes were filtered out, because these genes are possibly selected due to random
(noisy) factors2. The set of the remaining genes was then used to validate a
classifier so that the final output is LOOCV classification error. A different
classifier than the one used for CV of feature selection can be employed for CV
of classification. We found that sometimes it is beneficial to LOOCV error.

Table 1 shows LOOCV errors when no gene selection is applied (2nd column)
as well as when no rare gene filtering is done with GRAD (3th column) and when
this filtering is used (4th column). Independently of whether filtering is used or
not, using GRAD led to much lower errors than without it. Also rare gene
filtering can result in lower error compared to the ‘no filtering’ case and this
error is not necessarily achieved with the same classifier as the one used for CV
of feature selection.

kNN No gene selection GRAD (no filtering) GRAD (T = 50)
1NN 27.0 16.2 20.3
3NN 40.5 25.7 21.6
5NN 31.1 21.6 16.2

Table 1: LOOCV classification errors (in %) when no gene selection is done prior
to classification and for GRAD with and without filtering out rare genes before
cross-validating a classifier. The 1st column indicates an induction algorithm
used to validate classification. Best results are shown in bold.

Without rare gene filtering, GRAD selected 107 genes in all granules of 74
CV subsets (individual gene occurrence varies from 1 to 121). The number of 1-
granules, 2-granules, and 3-granules was 1,110 (80.43%), 162 (11.74%), and 108
(7.83%), respectively. When rare gene filtering (T = 50) was applied, indices3 of

2Rare genes were the key reason why we did not test a classifier on the left-out samples for
each CV subset, but instead we preferred to combine all selected genes together.

3We assume that the indices start at 1.
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11 selected genes were: 48, 53, 155, 249, 333, 348, 372, 409, 437, 762, and 769.
Table 2 summarises results for Bø and Jonassen’s method. AP and GP

stand for all-pairs and greedy-pairs variants, respectively. LOOCV classification
error was estimated with and without rare gene filtering. The 1st figure in each
bracket indicates the number of genes to be selected, corresponding to the lowest
LOOCV error for a given classifier and the variant of Bø and Jonassen’s method.
The 2nd figure in each bracket is the total number of selected genes accumulated
from all 74 CV subsets (these genes were used to validate a classifier) for the
number of genes to be selected specified by the 1st figure in brackets.

kNN AP (no filtering) GP (no filtering) AP (T = 50) GP (T = 50)
1NN 20.3 (10,40) 18.9 (90,200) 21.6 (16,12) 18.9 (86,77)
3NN 16.2 (4,21) 24.3 (22,77) 16.2 (24,20) 21.6 (32,26)
5NN 18.9 (4,21) 25.7 (12,56) 18.9 (24,20) 21.6 (4,3)

Table 2: LOOCV classification errors (in %) for Bø and Jonassen’s method. The
1st column indicates an induction algorithm used to validate classification. Best
results are shown in bold.

Though it seems that both GRAD and Bø and Jonassen’s method demon-
strated the same best performance (16.2% of LOOCV error), GRAD did so
with 11 genes, while its competitor needed almost two times more genes (20).
However, being a wrapper, GRAD is slower than Bø and Jonassen’s method.
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