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Abstract.

The use of modified Real Adaboost ensembles by applying weighted em-
phasis on erroneous and critical (near the classification boundary) has been
shown to lead to improved designs, both in performance and in ensemble
sizes. In this paper, we propose to take advantage of the diversity among
different weighted combination to build committees of modified Real Ad-
aboost designs. Experiments show that the expected improvements are
obtained.

1 Introduction

To combine Neural Networks (NNs) is more effective than trying to solve diffi-
cult problems by using big size single NNs; not only an easier design and better
accuracy can be obtained, but also a more clear understanding of how the result-
ing machine works. These reasons have increased the interest in this research
area during the recent years, producing a wide variety of methods [9]. Among
them, specially boosting methods [7], and in particular Real Adaboost (RA)
[2, 8], are attractive because their conceptual principles and their proved good
performance.

In [3] and [4] we proposed a new weighted emphasis function that allows,
introducing a mixing parameter λ, to assign more or less importance to the most
erroneous or to the critical (those that lie close to the classification boundary)
patterns; we call this procedure the RA with Weighted Emphasis (RA-WE)
algorithm. Some early experiments showed us that significant improvements
over the classical RA performance can be achieved when the mixing parameter
λ is adequately selected. However, finding the optimal λ is not an easy task,
and despite it can be found using cross-validation, it is still a delicate issue [5].

Rather than trying to find a good value for λ, in this paper we propose to
combine the outputs of a number of RA-WE networks trained with different
values of λ. This way, we can take advantage of the diversity among all RA-WE
components. In fact, it will turn out that an appropriate combination can even
improve the accuracy of the best RA-WE element due to a reduction in the error
variance and, therefore, a better generalization capabilities [9].
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The rest of the paper is organized as follows: in the next section, a brief de-
scription of the RA-WE algorithm is presented; later, we will consider the issue
of how to appropriately combine a number of these RA-WE networks trained
with different settings; in Section 4 we will test the performance of the result-
ing schemes over several benchmark problems. Finally, conclusions and future
research lines will close the paper.

2 The Real Adaboost with Weighted Emphasis Algorithm

As for conventional Real Adaboost [8], the construction of a RA-WE network is
carried out by incrementally adding to the ensemble, at each round t = 1, ..., T ,
a new base learner implementing a function ot(x) : X −→ [−1, 1]. The overall
ensemble output at round T , fT (·), is calculated as a linear combination of all
learners outputs,

fT (x) =
T∑

t=1

αtot(x) (1)

where αt is the output weight assigned the t-th learner, that is calculated ac-
cording to

αt =
1
2

ln
(

1 + rt

1 − rt

)
(2)

where

rt =
∑L

i=1 exp[−ft(xi)di]ot(xi)di∑L
i=1 exp[−ft(xi)di]

(3)

({xi ∈ χ, i = 1, ..., L} being the training data set and di ∈ {−1, 1} being the
target for pattern xi), if we accept that the training error bound

L∑
i=1

exp[−ft(xi)di] ≥ Etrain =
L∑

i=1

| sign[f(xi)] �= di | (4)

is minimized.
In RA-WE, each learner is trained to minimize the weighted mean square

error over the training data set

Ct =
L∑

i=1

Dλ,t(i)[di − ot(xi)]2 (5)

where Dλ,t is the following mixed emphasis function

Dλ,t+1(i) =
1
Zt

exp
{
λ[ft(xi) − di]2 + (1 − λ)f2

t (xi)
}

(6)

, and Zt being a normalization factor that assures
∑L

i=1 Dλ,t+1(i) = 1.
This weighted emphasis function allows us, by selecting different values for

λ (0 ≤ λ ≤ 1), to choose how much attention should be placed on the critical
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patterns (those near the classification boundary) and how much on the most
erroneous examples. For instance, when λ = 0 we only focus on critical patterns,
those close to the classification boundary (ft(xi) = 0); when λ = 1, the emphasis
function only pays attention to the quadratic error of each pattern; intermediate
values correspond to intermediate situations, λ = 0.5 providing the classical RA
emphasis function (see [5] for a more detailed explanation).

Different selections of λ result in RA-WE networks with different properties.
In [5], we explored a cross-validation strategy to select this parameter for getting
a minimum generalization error. Here, we follow a different approach consisting
on training a number of RA-WE networks, each one with a different value of λ,
and combining their outputs. Obviously, this combination can also be carried out
in many different manners, but it turns out that the simple schemes described
in the following section give satisfactory results.

3 Committees of RA-WE networks

Let us consider we already have a set of N RA-WE networks trained using N
different λ values from the set {λ0, . . . , λN−1}. Let us also denote by f̄T,n(x), n =
0, . . . , N − 1, the normalized version of the previous network corresponding to
λn:

f̄T,n(x) =
fT (x)∑T
t=1 |αt|

(7)

where fT (x) is calculated according (1) and | · | means absolute value.
Among the different methods proposed in the literature to combine neural

networks, we have chosen to use a weighted linear combination of the outputs of
the RA-WE nets, so that it is possible to take into account the relative accuracies
of each combined element [9]. We will consider two different outputs for the
overall network, depending on which kind of activation function is used:

• Linear activation

Flin(x) =
N−1∑
n=0

wnf̄T,n(x) (8)

• Hyperbolic tangent activation

Fth(x) = tanh

[
N−1∑
n=0

wnf̄T,n(x)

]
(9)

In both cases, output weights w = {w0, ...wN−1} will be selected so that
the sum-of-squares error over the training data set is minimized. Note that,
for the case of the hyperbolic tangent activation, this minimization requires a
gradient descent search, while for the linear activation case it is possible to use
the Moore-Penrose pseudoinverse [1].
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4 Experiments

This section presents the performance obtained from the application of the com-
bination of RA-WE ensembles in seven binary problems: Abalone, Contraceptive,
Image, Kwok, Phoneme, Spam and Tictactoe (the references for each data set
can be found in [3]). Table 1 summarizes the main features of these problems:
dim: number of dimensions; n1/n−1: number of samples of each class; the error
rate achieved by a Support Vector Machine (SVM) with Gaussian Kernel1; and
the recognized record error rate together with the machine that offers it (RA,
RA-WE CV2 or, when it is known, the Bayes solution).

Train samples Test samples SVM Record
Problem dim

(n1/n−1) (n1/n−1) error rate error rate

Ab 8 1238/1269 843/827 20.9 19.16 (RA-WE CV)

Co 9 506/377 338/252 28.61 28.50 (RA-WE CV)

Im 18 821/1027 169/293 3.47 2.25 (RA)

Kw 2 300/200 6120/4080 11.74 11.3 (Bayes)

Ph 5 952/2291 634/1527 15.35 13.59 (RA-WE CV)

Sp 57 1673/1088 1115/725 7.2 5.69 (RA)

Ti 9 199/376 133/250 1.7 1.47 (RA)

Table 1: Characteristics of the benchmark problems.

For each problem we trained 11 different RA-WE ensembles with linearly
spaced λ values between 0 and 1. The number of rounds (T ) for each problem was
adjusted first for λ = 0.5, stopping the building of the corresponding ensemble
(conventional RA in this case) when the mean value3 of αt was very close to
0 (α ≈ 0.01). This value was then used for all RA-WE ensembles using other
values of λ.

In all cases, we have used Multi-Layer Perceptrons (MLPs) as the base learn-
ers elements, considering two numbers of hidden units (M): one corresponds to
the RA design that offers the best performance; the other is chosen as the max-
imum value that guarantees that there are at least 25 training samples for each
free parameter. MLPs training consists on randomly initializing their weights
in interval [−1, 1], and then, by means of a back-propagation algorithm with a
unique learning step 0.01, updating them to minimize (5).

Committee output weights training depends on the activation function that
is being used. If linear, the Moore-Penrose pseudoinverse solution is applied; if a
hyperbolic tangent, we follow a gradient descent algorithm with a learning step

1Their parameters, kernel dispersion and penalty factor, are chosen by a 5 fold cross vali-
dation process.

2RA-WE using cross-validation for selecting λ [5].
3This mean value is calculated over 50 independent runs.
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fixed to 0.05 during 50 epochs and decreasing linearly from 0.05 to 0 along 50
more epochs.

In Table 2 we present the average error rates (50 runs) that are obtained
by the new approach (both when using linear and non-linear activations), and
compare them to those achieved by classical RA algorithm and RA-WE CV
(the RA − WE algorithm when λ value is selected among the set of values
{λ0 = 0, λ1 = 0.1, ..., λ10 = 1} by a five-fold cross validation process [5]). Be-
sides, the results corresponding to the RA − WE network that achieves the best
performance in test, denoted as RA − WE0, are also presented. This “omni-
scient” approach is not valid for designing purposes, but it is interesting to
evaluate the performance of the new committees.

Furthermore, to check the statistical significance of the results, we have in-
cluded the value resulting of applying the Wilcoxon Rank-sum test [6]: pRA,
with respect to classical RA, and pCV , with respect to RA-WE CV. We remark
that a value below 0.1 means that there exists a statistical difference between
the two approaches, while a value close to 1 reflects the opposite situation.

Linear activation Tanh activation
M ERA ECV E0

Elin pRA pCV Eth pRA pCV

9 19.43 19.40 19.18 19.20 0 0 19.36 0.18 0.70
Ab

6 19.20 19.16 19.00 18.92* 0 0 18.98 0 0

4 28.90 28.61 28.56 28.79 0.93 0.30 29.56 0.02 0
Co

3 29.20 28.50 28.50 28.78 0.2 0.17 29.19 0.71 0

9 2.25 2.25 2.25 2.48 0 0 2.10* 0.01 0.01
Im

2 2.86 2.89 2.86 2.98 0 0.08 2.67 0 0

9 11.68 11.63 11.63 11.65 0.06 0 11.69 0.49 0
Kw

4 11.82 11.72 11.70 11.70 0 0.24 11.71 0 0.25

36 13.89 13.59 13.56 13.61 0.03 0.81 13.48 0 0.27
Ph

28 13.70 13.60 13.52 12.33 0 0 12.30* 0 0

5 5.69 5.73 5.69 5.50* 0.06 0.05 5.79 0.38 0.31
Sp

2 6.04 6.03 6.03 6.00 0.64 0.74 5.92 0.21 0.22

8 1.47 1.47 1.47 4.29 0 0 4.21 0 0
Ti

2 8.12 6.94 6.94 8.63 0.1 0 7.95 0.9 0.02

Table 2: Error rates achieved by the committees of RA-WE ensembles using
linear and non-linear activations (Elin and Eth, respectively) compared to RA
(ERA), RA-WE CV (ECV ), and the “omniscient” reference RA − WE0 (E0).

These results show that both combination methods not only improve RA
and RA-WE CV accuracy in most the problems, but even that the RA − WE0

error rate is reduced significantly in four out of the seven data sets: Ab, Im,
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Ph and Sp. Even more, record rates have been improved by the ensemble with
linear activation for Ab and Sp, and by that employing the hyperbolic tangent
for Im and Ph (these new records are marked with an asterisk in Table 2).

Examining in detail the other problems, specially Ti with M = 2, we have
observed that some RA-WE networks present high error rates, degrading com-
mittees performances. This problem could be avoided using techniques to elimi-
nate these “low quality” RA-WE networks, so getting additional significant error
rates improvements, together with a reduction in the committee complexity.

5 Conclusions and future work

In this paper we have taken advantage of the diversity that RA-WE networks
present when different emphasis trade-offs are used to build committees with
them. It has been shown experimentally that significant error rate reductions
can be achieved with these approaches with respect to RA and RA-WE CV.

Studies to evaluate other combination procedures and to simplify the com-
plexity of the resulting committees of boosting ensembles are interesting research
subjects along this promising avenue.
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[4] V. Gómez-Verdejo, J. Arenas-Garćıa, M. Ortega-Moral and A. Figueiras-Vidal, Designing
RBF classifiers for weighted boosting. In Proc. International Joint Conference on Neural
Networks 2005, pages 1057-1062, Montreal, Canada, 2005.
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