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Abstract. We present a review of recent trends in cognitive robotics
that deal with online learning approaches to the acquisition of knowledge,
control strategies and behaviors of a cognitive robot or agent. Along this
line we focus on the topics of object recognition in cognitive vision, tra-
jectory learning and adaptive control of multi-DOF robots, task learning
from demonstration, and general developmental approaches in robotics.
We argue for the relevance of online learning as a key ability for future
intelligent robotic systems to allow flexible and adaptive behavior within
a changing and unpredictable environment.

1 Introduction

In hard- and software we currently observe technological breakthroughs towards
cognitive agents, which will soon incorporate a mixture of miniaturized sen-
sors, cameras, multi-DOF robots, and large data storage, together with sophis-
ticated artificial cognitive functions. Such technologies might culminate in the
widespread application of humanoid robots for entertainment and house-care,
in health-care assistant systems, or advanced human-computer interfaces for
multi-modal navigation in high-dimensional data spaces. Making such technolo-
gies easily accessible for every day use is essential for their acceptance by users
and customers. At all levels for such systems learning will be an essential in-
gredient to meet the challenges in engineering, system development, and system
integration. Neural network methods are of crucial importance in this arena.

Cognitive robots are meant to behave in the real world and to interact
smoothly with their users and the environment. While off-line learning is well
established to implement basis modules of such systems and many learning meth-
ods work well in toy domains, in concrete scenarios on-line adaptivity is neces-
sary in many respects: in order to cope with the inevitable uncertainties of the
real world, the limited predictability of the interaction structure, or to acquire
new and to enhance preprogrammed behavior. Online learning is also a main
methodological ingredient in the developmental approach to intelligent robotics,
which aims at incremental progressing from simple to more and more complex
behavior.

While learning is a multi-faceted phenomenon, – which is reflected in numer-
ous different proposals how to relate and implement its various aspects–, in the
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current context of online-learning the time scale at which learning can take place
can be used to categorize approaches [44].

In many subfields of cognitive robotics at the slowest time scale learning
methods are used in order to create initial system functions by off-line algo-
rithms. Learning at this level does not involve any behavior of the robot and
permits to create important initial subsystem functionalities which would have
been much harder to obtain by explicit programming alone. While this level is
very important initially in the construction of powerful robots, its contribution
becomes frozen afterwards and is therefore not in the scope of the present paper.

At a faster scale those learning processes can be summarized where adaptive
changes occur on-line, during (and based on) the actual behavior of the robot and
refine its initial capabilities. The increased complexity introduced through the
active behavior is then often compensated by requiring the adaptive changes to
be (at least largely) local to each module, so that learning processes at this level
can become “encapsulated” in a single functional module. Typical examples
are subsystem calibrations like on-line color-recalibration or the refinement of
control models and the respective algorithms can mostly be based on ideas of
statistical learning. In this group of algorithms the majority of approaches have
been developed in visual learning and will some will be reviewed in Section 2.

Finally, at the behavioral level it is the main challenge to make rapid “one-
shot” learning feasible. This cannot rely exclusively on slow and repeated adap-
tations; instead, this level has to rapidly coordinate adapted subsystem function-
alities in very structured, situation-specific and cross-modular ways. Clearly,
coming up with working learning mechanisms at this “situated” level poses a
significant research challenge. The notion of imitation learning has emerged as a
very promising paradigm to cope with this challenge and some recent approaches
will be covered in Section 3.

A very important issue in all online learning approaches is the way the results
of learning are stored. Many motor control architectures use learning to change
the parameterization of basis behaviors and therefore only implicitly store the
learning result. Other approaches employ primitive graphical mappings, hash ta-
bles, or – more sophisticated– associative neural mappings to store co-occurrence
of sensory inputs and motor outputs for later reuse. The interplay between mem-
ory, association and reward is investigated in a model of conditioned learning
with latent inhibition by Gomond and Salotti([15] in this issue). Models that
use a more complex representation during learning have to find a compromise for
the classical stability-plasticity dilemma, to control the tradeoff between learn-
ing flexibility and generalization. A common approach that is clearly motivated
from biological learning models is the separation into short-term memory (STM)
and long-term memory (LTM). This has been applied to online learning for vi-
sual object representations [24] and models of word acquisition [38]. Duro et al.
([7] in this issue) propose a two-level memory architecture with STM and and
LTM using evolutionary methods to organize the transfer between the levels and
apply this to tasks of robot navigation.
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2 Online Learning in Cognitive Vision

One of the main problems of online learning in cognitive vision is the natural
high dimensionality of visual sensorial input. This poses a challenge to most
current learning architectures, since generalization is difficult to achieve in high-
dimensional spaces. Another problem is that most established trainable clas-
sifier architectures like e.g. multi layer perceptrons (MLP) or support vector
machines (SVM) do not allow online training with the same performance as for
offline batch training. Consequently, only few work has been done in the recent
time on online learning of complex visual stimuli like real objects in natural en-
vironments, if we compare this to the large body of work on model-free object
recognition architectures that can be trained offline. The capability of online
learning makes a fundamental difference to offline learning, since it enables an
interactive process between teacher and learner. The immediate feedback on
the current learning state can induce an iterative and active learning process
that reduces the amount of training data that has to be presented and allows an
iterative error correction based on user feedback.

To make online learning feasible, the complexity of the sensorial input has
been reduced to simple blob-like stimuli [34, 23, 11], for which only positions
are tracked. Based on the positions, interactive and online learning of behavior
patterns in response to these blob stimuli can be performed [23]. In the following
we will focus on recent work that has tried to extend the framework for online
learning to the actual learning and discrimination of complex objects with more
visual structure.

Garcia et al. [13] have applied the coupling of an attention system using
features like color, motion, and disparity with a fast learning of visual structure
for simple colored geometrical shapes like balls, pyramids, and cubes. Shape is
represented as low-resolution feature maps computed based on convolutions with
Gaussian partial derivatives. Based on the shape and feature map representation
the system can learn and direct attention to particular objects.

Another approach to tackle the problem of high dimensionality of visual ob-
ject representations are histogram-based methods. Steels and Belpaeme [42]
have studied the dynamics of learning shared object concepts based on color
histograms in an interaction scenario with a dog robot. Roy and Pentland [38]
have investigated a computational model of unsupervised word acquisition that
learns directly from raw multi-modal sensory input. The visual object repre-
sentation is based on multidimensional receptive field histograms [41] for shape
representation and color histograms. The learning proceeds online by using
a short-term memory for identifying re-occurring pairs of acoustic and visual
sensory data, that are then passed to a long-term representation of extracted
audiovisual objects.

Arsenio [2] has proposed a developmental learning approach for humanoid
robots based on an interactive object segmentation model that can use both ex-
ternal movements of objects by a human and internally generated movements of
objects by a robot manipulator. Using a combination of tracking and segmenta-
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Fig. 1: Presentation scenario for the online learning model of Kirstein et al. The
right side shows candidate regions that are passed to the ASDF segmentation
stage of Götting et al. and then used to build up an incremental object repre-
sentation. The system can discriminate freely rotated complex shapes, even if
they have similar color structure.

tion algorithms the system is capable of online learning of objects by storing them
using a geometric hashing [35] representation. Based on a similarity threshold,
objects are separated into different classes. An earlier version using only color
histograms [2] was later extended by shape features [3], that use the comparison
of all pairs of oriented edges in the segmented objects. From his experiments it
seems, however, that the discriminatory power is limited to a small number of
objects and still strongly depends on the color histogram representation. What
is more important is his integration of the online object learning into a model for
tracking objects and learning task sequences and to recognize objects employed
on such tasks from human-robot interaction.

An interesting approach to supervised online learning for object recognition
was proposed by Bekel et al. [6]. Their VPL classifier consists of three major
stages. First the input is separated into raw appearance clusters using a vec-
tor quantization method, and in the second stage a local principal component
analysis is performed for dimension reduction. The final stage is a supervised
classifier using a local linear map architecture [36]. The image acquisition of new
object views is triggered by pointing gestures on a table, and is followed by a
short training phase, which takes some minutes. Currently the main drawback is
the lack of an incremental learning mechanism to avoid the complete retraining
of the architecture. The recognition model has been integrated into a cognitive
vision system that integrates a wide variety of visual functions like localization,
object tracking/recognition and action recognition [52].

Kirstein et al. [24] have developed an approach for the supervised online
learning of object representations based on a biologically motivated architecture
of visual processing. They use the output of a recently developed topographical
feature hierarchy [51] to provide an appearance-based representation of three-
dimensional objects using a dynamical vector quantization approach. Unlike
most other rapid learning approaches to object recognition this architecture is
not based on a dimension reduction principle, but uses a series of hierarchical
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feature detection and spatial integration stages, similar to the ventral visual
pathway of humans. The output is a topographical feature map representation
that achieves a robust response to modest transformations of the input like rota-
tion, scaling, and translation. The efficiency of the representation is achieved by
sparse coding that ensures that object views are represented using only sparse
activation in the high-dimensional feature space [51]. The output of the feature
detection stage is passed to an online learning memory model that consists of a
rapidly learning short-term memory (STM) and a long-term memory (LTM) for
later consolidation of object representations. The STM is realized as an incre-
mental vector quantization model that adds object view representatives based on
a threshold on the Euclidean similarity to already stored templates. Using this
STM, the architecture is capable of online learning of 50 complex objects within
three hours with an average classification error of 5%. In these experiments ob-
jects were freely presented by hand in arbitrary rotations, but the background
was constrained to be black in combination with a black glove to facilitate a sim-
ple entropy-based segmentation of the objects. Based on the current object view
content of the STM, the LTM can be trained continuously, albeit on a slower
time scale, using an incremental adaptation of a learning vector quantization
(LVQ) training algorithm. As was shown in [24], online learning is also feasible
for a realistic setting of a limited STM, that can only hold recent information
of the last 10 objects. By using an appropriate incremental node addition pro-
cedure and temporally changing learning rates for the object representatives in
the LTM, the system can handle the stability-plasticity dilemma quite efficiently
and does not suffer from catastrophic forgetting problems like standard MLP or
SVM architectures.

Götting et al. ([16], in this issue) have developed the adaptive scene-depen-
dent filter (ASDF) segmentation approach to extend the online learning object
recognition architecture by Kirstein et al. [24] to a less constrained scenario
that would also be the natural interaction with a humanoid robot like ASIMO
[18]. The setting is given as a human teacher presenting objects in front of a
stereo camera system, without any further constraints on the environment or
the clothing of the teacher (see Figure 1). Using stereo processing, the focus
is centered on the shown object with the concept of peripersonal space [14] in
the proximity of the camera head. Based on the raw distance map around the
candidate object region, a relevance map is computed that covers the object only
coarsely. For each pixel location in the candidate region, a local feature vector is
computed based on RGB color channels, distance, and local orientation. Using
a dynamic vector quantization model [17], first an unsupervised segmentation
is computed using the local feature vectors and then object segments are cho-
sen by the overlap relation of the found segments to the relevance map. The
segmentation is sufficiently fast to allow a processing frame rate of 6 frames per
second for the complete preprocessing and object learning system on a system of
two dual processor desktop computers. Using the ASDF approach, the learning
and recognition performance shows almost no degradation compared to the more
constrained setting shown in [24], and learning of 50 objects is possible with a
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classification error less than 5%. The complete online learning recognition sys-
tem has recently been integrated into a cognitive vision system architecture using
also speech recognition for a particularly intuitive interactive training dialogue
during object presentation.

3 Learning by demonstration and imitation

In practice, all current cognitive robot architectures implemented in real robots
rely on hand-wired designs of the control flow to assure a proper sequencing
of behaviors. Often such flows can be formalized in form of state machines,
which trigger functional modules with respect to a given overall state of the
robot. Learning on the architectural level in this context takes an evolutionary
pathway: it consists of memorizing action patterns, which are defined to be
reasonable by the designer, rather than changing the connectivity between the
elementary functional units. However, with the number of modules and states
of the system the number of potential state-transitions increases exponentially
and the functional interdependencies quickly become intractable. Even when
using states and state-machine concepts, it difficult to ensure stability on the
transition level, which means that the system always is in a defined state and
recovers to a reasonable behavior. Reconfiguration of the control flow then is a
tedious endeavor always at risk of complete functional failure of the system.

To make learning in such situations feasible, the approach of imitation learn-
ing is very appealing [5, 1, 10, 27, 33], in particular for humanoid robots with
many degrees of freedom and potentially very complex behavior [40]. The ba-
sic idea is to find a “template” for a successful behavior by observation of a
(human) instructor. This requires to endow the robot system with sufficient
perceptive capabilities to visually acquire the action to imitate; to transfer the
observed action into an internal representation, which accounts as well for the
system’s parameters and copes with the different accessibility of sensor data and
the possibly different “instrumentation” with actuators and finally to be able to
physically execute a suitable action by an actuator [44]. One early approach to
formalize this linking between perception and motor action has been provided
in [40] and further pursued e.g. in [39].

Learning along these lines aims at memorizing successful action paths re-
alizable within the given control flows by monitoring the instructor, because
systematic exploration in the real world is practically impossible. It requires
a representation to store the imitated behavior for reuse, while expecting that
lower level flexibility and robustness will allow to apply it later in similar situa-
tions. This representation might be implicit in parameter settings, however, in
order to learn multiple behaviors, classification of situations and a reference to an
appropriate behavior needs some explicit memorizing mechanism. Though the
concept of imitation appears in principle very appealing, concrete realizations re-
quire complex behavioral systems and the availability of many partial sub-skills.
Therefore many authors have concentrated on partial imitation in trajectory
learning, reaching movements, or other particular behaviors like grasping.
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3.1 Trajectory learning and adaptive control of multi-DOF robots

While for classical standard fabrication robots standard tools from control the-
ory are available to drive the robot along pre-specified paths, the control of the
often highly redundant complex kinematics for humanoid robots is by far more
difficult. In particular the problem to coordinate different DOFs to generate
goal directed and smooth movements have motivated many authors to use im-
itation of human movements as basic templates. All these approaches rely on
recording a number of reference trajectories, defining or training suitable move-
ment primitives offline, and on achieving online capabilities by changing the
parameterization of the movement generating dynamic system according to the
observable current context. For implementing the basis behaviors, Ijspeert et
al. use nonlinear differential equations parameterized by target coordinates for
goal reaching movements [20], or employ parameterizable oscillator networks for
generating cyclic movements [19]. Billard and Mataric use specifically tailored
recurrent networks inspired by biological mirror systems to imitate arm move-
ments [9]. Though the movement primitives in the aforementioned references
are defined beforehand, the respective robots can react with a reasonable and
flexible suitable behavior to online observed input. Recently, D’Souza et al. [48]
have also demonstrated for the 41 DOF ATR humanoid robot that it is possible
to learn a complete inverse dynamics model truly online while behaving and to
use this in adaptive control for tracking a reference behavior. The basis for this
approach is an online learning scheme, which acquires incrementally low dimen-
sional local projection models which are combined into a locally weighted output
sum.

A further learning model of robot behavior has been developed by Tani [45]
based on a partially recurrent neural network with parameterized bias (PBRNN),
which is trained conventionally with backpropagation to associate perceptive in-
puts to desired motor outputs by evaluating the prediction error for perception.
The PBRNN has for instance been used to imitate cyclic human arm movements
[22], to connect speech input with motor behavior[22], or to generate joint at-
tention in a visually driven imitation game [21].

3.2 Task learning from demonstration

Most of the earlier imitation approaches were devoted to learning by demonstra-
tion [12], [25], [47], aiming to reproduce reaching behavior and grasping with
simple grippers. In these models, the imitation concentrates to provide a de-
sired sequencing of basic sub-skills to achieve an observed target behavior on
the task level. In [44, 28, 43], a more sophisticated system including modules for
visual attention, speech recognition, integration of visual and linguistic input,
scene memory and anthropomorphic grasping for instructing a robot to grasp
every day objects has been presented to provide an architecture for imitation
grasping. Only recently more systematic approaches to extract the important
information about the task to be solved by imitation have been formulated using
an optimization framework [8] or symbolic terms [53].
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4 The developmental approach

A different though overlapping source of ideas leading to online learning has
recently emerged under the paradigm of developmental learning [49],[4],[50]. It
combines earlier approaches to learn partial skills like gaze tracking, hand-eye
coordination, visual tracking of objects, or sensori-motor mapping for simple
manipulation with motivation from developmental psychology to provide ap-
proaches for incremental scaling of robotic architectures from simple to complex
behavior. A pronounced approach in this direction has been sketched in [26] as
developmental pathway which progresses from a level of self-awareness defined
by capabilities as eye vergence control and arm-head coordination over world
awareness given by visually initiated reaching and control of grasp to imitation
very much in the sense described above. Different authors have concentrated on
steps along this pathway like joint attention and gaze direction [31], [46], basic
sensori-motor control [30] or linking vision and motor control for reaching and
grasping [32], [29]. An interesting example of online learning in developmental
approaches to vision is the adaptation of the mapping from visual to motor space
for learning the gaze control of a saccading active camera head [37]. The ability
of online learning allows a rapid autonomous recalibration of the visual system
to different optical parameters, and can also cope with a complete mirroring of
the the up-down direction induced by a prism.

5 Perspectives for cognitive learning architectures

Online learning in cognitive robot architectures is a complex yet increasingly im-
portant topic. It gains even more attention with the advent of humanoid multi
DOF robots which interact with humans in a multi-modal fashion. Looking at
biological systems in comparison to contemporary robot control architectures,
the former consist of interconnected loops stabilized by numerous mechanisms
of error-tolerance implemented by adaptivity, self-repair, and default fallback
behaviors while the latter lack exactly this robustness. In biology, it is often
difficult to distinguish functionally divided modules properly and any attempt
to modularize function and structure devoted to it is quite an idealization. This
suggests that a major challenge to be met for approaching higher complexity in
cognitive robots is to successfully adopt methods of dealing with systems that
we cannot analyze in their full detail and in closed form. Learning architectures
can provide a key to scale robot systems to a reasonable complexity allowing
for smooth interaction. Though on the system level systematic investigation of
learning architectures is very difficult and comparative evaluation in interaction
is a completely open issue, there is a lot of progress in the subfields of imitation
learning on the trajectory level, joint attention, learning of reaching and grasp-
ing, and visual acquisition of objects and scene models. On the architectural
level, a great source of inspiration are the biological mirror systems in the mo-
tor cortex, which inspire memory systems and associative networks in various
ways. The most difficult step towards truly cognitive architectures currently
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seems to be the integration of the various powerful methods available in flexible
architectures into a unified system. This step should enable situated learning
on the system level and in this way go beyond partial skill acquisition of simple
imitation behaviors.
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[44] Jochen J. Steil, Frank Röthling, Robert Haschke, and Helge Ritter. Situated robot learn-
ing for multi-modal instruction and imitation of grasping. Robotics and Autonomous
Systems, Special Issue on ”Robot Learning by Demonstration”(47):129–141, 2004.

[45] J. Tani. Learning to generate articulated behavior through the bottom-up and the top-
down interaction processes. Neural Networks, 16(1):11–23, 2003.

[46] J. Triesch, C. Teuscher, G. Deak, and E. Carlson. Gaze following: why (not) learn it?
Developmental Science, 9(2):125–147, 2006.
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