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Abstract. Recently, Man-Machine-Interfaces contacting the nervous
system in order to extract information resp. to introduce information gain
more and more in importance. In order to establish systems like neural
prostheses or Brain-Computer-Interfaces, powerful (real time) algorithms
for processing nerve signals or their field potentials are required. Another
important point is the introduction of information into nervous systems
by means like functional neuroelectrical stimulation (FNS). This paper
gives a short introduction and reviews different approaches towards the
development of Man-Machine-Interfaces using artificial neural networks
respectively machine learning algorithms for signal processing.

1 Introduction

In 1868, although the biophysical basics of the nervous system were unknown
at that time, Helmholtz already depicted the nervous system as the system
transmitting information in a biological subject while comparing it with wires of
the telegraph system [1]. It took more than 60 years until technical development
made it possible to prove this assumption by observing single neuron activity
in detail, which led to the discovery of action potentials by later Nobel price
laureate Adrian in cooperation with Bronk [2]. Already five years earlier, in
1924, Berger discovered the electroencephalogram (EEG, published 1929) which
allows to observe neuronal activity of the brain [3]. In contrast to Adrian &
Bronk who used concentric needle electrodes to observe motor units, Berger
employed surface electrodes placed on the scalp to measure neuronal activity.
Thus, Berger measures sum potentials from diverse regions of the brain whereas
Adrian & Bronk observe dedicated signals of single nerve fiber units.

Inspired by the advancement in knowledge of the neuronal system, the de-
velopment of new recording methods as well as the possibility of miniaturising
electronic devices, the idea to connect the nervous system with technical de-
vices via an interface, the so called Man-Machine-Interface (MMI) arose in the
middle of the 20th century. Figure 1 shows a scheme of a MMI in principle.
Examples are prostheses driven by signals from the peripheral nervous system
(PNS) as well as brain computer Interfaces (BCI) for locked-in patients based
on signals from the central nervous system (CNS). Vice-versa, the introduction
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Fig. 1: Scheme of a MMI in principle. Nervous signals are acquired from a sub-
ject. Recorded signals are preprocessed in order to ameliorate the classification
and thus the correct interpretation of the measured signals. Due to the interpre-
tation, various applications can be driven by means of nervous signals. Finally,
some output devices may give feedback, closing the loop back to the subject.

of information into the nervous system in order to control paralysed extremi-
ties via functional neuroelectrical stimulation (FNS) of nerves has been realised.
Not yet mentioned, but quite important to some MMI and especially for the
understanding of information coding within nervous tissues, is the detection and
identification of neuronal spikes (spike sorting). Depending on the diversity of
applications and thus the use of different technologies a wide range of approaches
towards MMI have been developed. In this paper we focus on approaches ap-
plying artificial neural nets (ANN) and/or machine learning (ML) to MMI and
spike sorting.

After giving a short overview of techniques to connect nervous tissue using
invasive as well as non-invasive methods, the paper focusses more or less exten-
sive on three topics within MMI: spike sorting, FNS and BCI based on ANN/ML
processing methods. At the end, a short conclusion will be drawn.

2 Connecting nervous tissue

A broad range of technical devices to realise connection with nervous tissue have
been developed throughout the last decades. Their main distinctive feature is
whether they are invasive or non-invasive. In a second step, they may be clas-
sified regarding the area they are used in, e.g. PNS or CNS. In the following, a
very short overview about often used devices to contact nervous tissues regarding
the classification system mentioned above is given.
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2.1 Non-invasive methods

The probably most well-known device to contact the nervous system is the sur-
face electrode since it is used commonly for EEG. Also, it is applied for recording
of muscle activity in the case of electrocardiogram (ECG). Surface electrodes are
provided in a broad range of different sizes and forms. Mainly, they consist of a
flat round surface made of silver/silver chloride. Using electrographic gel, elec-
trodes can be fixed on the skin. Surface electrodes are often used for BCI. In
this case, electrode caps can be used. Further non-invasive methods for BCI are
magneto-encephalography (MEG) [4] and functional magnetic resonance imag-
ing (fMRI).

Other non-invasive devices are planar microelectrode arrays (MEA) [5, 6].
On these planar MEA nervous tissue can be cultivated in order to investigate
the application of drugs or information processing [7, 8]. Thus, they are not
usable for MMI, but since they are important regarding the investigation of
nervous information processing, at least they should be mentioned.

2.2 Invasive methods

Most commonly used as invasive method are needle electrodes in all possible
variations. The simplest needle electrode is just a pointed conductive material
connected to an amplifier which is introduced into nervous tissue. For the most
part of needle design, the electrodes are made of iridium, platinum, steel or
tungsten with diameters from 13 µm up to 80 µm [9]. Starting for this simple
configuration, multielectrodes have been developed. A multielectrode is (more
or less) simply the composition of several single electrodes into a bunch, whereas
all electrodes contact the nervous tissue. Mainly used are stereotrodes where 2
electrodes are mounted like a twisted pair cable and tetrodes where 4 electrodes
are used. In order to stabilise this construction, different techniques have been
applied. A quite tricky one has been developed by Uwe Thomas Recording [10,
11]. They grow quartz around 4 platinum/tungsten electrodes and sharpen the
quartz cylinder. Thanks to its stability, this design has found widespread use.

Since we live in a century dominated by semiconductors, the idea to use semi-
conductor for electrodes came up quickly. Due to its crystalline architecture very
pointed needles can be etched. Additionally, several electrodes can be placed on
a needle using common techniques from semiconductor production [12]. Most
known representatives of this approach are the so called Michigan [9] and Stan-
ford probes [13]. Both used initially 30 µm thick silicon plate to etch structure
by photolithography. Currently, in some projects these kind of electrodes are
designated for use in CNS to establish BCI [14]. A further development of this
technique led to 3-dimensional electrode arrays designated to be implanted in
the cortex [15, 9]. In fact, the arrays consist of a semiconductor plate into
which a number of needle electrodes, sometimes with different lengths, have
been etched. This architecture is dedicated to be implanted into the cortex to
investigate larger regions at the same time and in different depth. Well known
are single microelectrodes penetrating deep into the brain capable of measuring

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

33



action potentials of few neurons, and multiple electrode array systems penetrat-
ing only 1–2 mm into the brain. A compact review of invasive techniques is
available [16]. Lately, invasive methods are being used increasingly for BCI. Of
these, the most well-known are electrocorticography (ECoG), whereby a grid of
typically 64 electrodes is placed subdurally onto the cortex [17, 18].

A special form for PNS are regenerative multielectrodes [19]. These elec-
trodes take advantage of the property that peripheral nerves of vertebrates will
regenerate if severed. For this reason, the peripheral nerve can be surgically
severed in order to insert the proximal and the distal stump into a guidance
channel which encloses the chip.

The sensor itself is fabricated of polyimide perforated by multiple ’via holes’.
The axons regenerate through the via holes from the proximal stump towards
the distal stump of the nerve. Nerve signals can be recorded by electrodes, which
are enclosing some of the via holes.

A widespread electrode for PNS used not only for recording but often for
functional neuroelectrical stimulation of nerve fibers are cuff electrodes [20].
These electrodes are made of flexible materials which are able to enwrap a nerve
fibre. Electrodes are placed at the inner side of the roll in order to record nervous
signals or to stimulate the nerve fibre. In order to provide optimal selectivity
regarding the area within the stimulated nerve fibers, cuff electrodes can be
equipped with point electrodes [21].

3 Spike sorting

An important issue in the processing of nerve signals is the detection of the
original source of action potential occurring in a recorded time stream of signals
from (multi-)electrodes, the so called spike sorting. Current multielectrode ar-
rays allow recording from as many as one hundred neurons [22]. The ability to
identify the origin of an action potential is important to interpret information
processing as well as the direction of information flow. With increasing number
of electrodes, the level of automation becomes an important factor in addition
to the accuracy of spike sorting which affects the accuracy of all subsequent sys-
tems. In order to achieve the goal of automation as well as to meet the challenge
of adaptability to individual circumstances, ANN have often been applied to this
problem. A selection of these approaches will be described below. An overview
on spike sorting can be found in [23].

Already in 1988, Hopfield nets [24] have been applied to spike sorting [25].
In this work, Hopfield nets have been compared with template matching, a
common tool for spike sorting. According to [25], template matching is superior
to Hopfield nets.

Of course, feedforward-nets have been often used to classify action potentials
from nerves [26, 27, 28]. A comparison with template matching has been done
in [29]. In this case, a fully connected feedforward-net with 24 input neurons,
8 neurons in the hidden layer and 3 output neurons was used. This approach
shows better classification results than template matching, especially in the case
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of a high signal-to-noise ratio.
Nevertheless, all approaches described above lack the important ability to

learn automatically. Thus, in recent years ANNs used for spike sorting concen-
trate more and more on unsupervised learning algorithms. In 1994 ART2 [30]
was applied to spike sorting [31]. Due to the obviously high variance within the
action potentials used for the training of the net, 8 prototypes were identified
whereas only two different nerve signals were presented within the data base.
Thus, ART2 tends to overclustering. Kohonen’s self-organising map (SOM) [32]
was found to to avoid this problem, but at a first glance only in a complex
hybrid system including 4 ANNs [33, 34]. A complete system, from recording
via multielectrodes up to the control of a limb prosthesis including a complete
automatic spike sorting system for signals from PNS, has been presented in [35].
The spike sorting system consists of a signal processing flow called ISC which
uses 3 different processing steps: Independent Component Analysis (ICA), SOM
and Clusot [36]. This architecture has been successfully transferred to signals
from the CNS and even ameliorated by replacing SOM by a modified version
of Growing Grid [37], taking into account refractory periods of action poten-
tials [38].

4 Functional neuroelectrical stimulation

Even though ANN are quite popular for neuromuscular stimulation, surprisingly
they are not often used for direct FNS of nerve fibers. In [39] different archi-
tectures of ANN have been investigated in order to stimulate nerves controlling
the knee. Mainly different architectures of feedforward nets including time-delay
structures have been applied to the problem of closed-loop control. According
to the author, a feedforward net with time-delay structure obtains better control
results than classical control techniques from control engineering.

Another example of direct FNS of nerves is given in [40]. In this paper
a closed loop strategy for the control of hand grasp movements for paralysed
patients which is based on an ANN is presented. To this end, an ANN controller
applies FNS to a peripheral nerve with the aim to initiate axonal stimulation
patterns similar to those generated by the central nervous system. Training and
testing of the control strategy were based on data gained in vivo from a pig’s
limb while applying FNS. The heart of the controller consists of a FlexNet [41].
Starting with input and output neuron layers this algorithm incrementally builds
a multi layer perceptron architecture during the training phase. Using Rprop
learning for the weight adaption, FlexNet determines the best suited position in
existing or new layers for competing groups of candidate neurons in the current
network. Despite muscle fatigue and other nonlinear disturbances the control
strategy results in high control quality.
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5 Brain computer interfaces

The aim of brain computer interface research is to establish a new augmentative
communication system that translates human intentions—reflected by suitable
brain signals—into a control signal for an output device such as a computer
application or a neuro-prosthesis [42]. This section introduces BCI terms and
techniques and current state of the art in rehabilitation.

Recent years have witnessed growing research interest in BCIs. Firstly, this
is due to the fact that man machine interfaces have the potential to alleviate
many neurological and neuromuscular diseases. Stroke and spinal cord injury
rehabilitation by neural prosthetics is also possible. Secondly, the task of ex-
tracting and interpreting useful information from the brain or nervous system
remains a difficult and interesting challenge for researchers.

Non-invasive input methods for BCIs are usually the brain’s neuronal activity
recorded at the scalp by electroencephalography (EEG), magneto-encephalo-
graphy (MEG) and functional magnetic resonance imaging (fMRI) [43]. An
MEG-BCI using SVM was presented in 2005 with 10 healthy subjects (offline)
and 4 healthy subjects spelling a name online [44].

Lately, invasive methods are being used increasingly. Signal acquisition is by
electrocorticography (ECoG), whereby a grid of typically 64 electrodes is placed
subdurally onto the cortex, single microelectrodes penetrating deep into the
brain capable of measuring action potentials of single neurons [45], and multiple
electrode array (MEA) systems penetrating only 1–2 mm into the brain. Invasive
methods offer higher spatial resolution and the promise of finer-grained control.

Classification of the brain signal requires high accuracy and speed. High
accuracy is required to prevent mishaps when controlling an artificial hand, for
example. Patients’ frustration levels are bound to rise if unintended communi-
cation output is given. Fast classification is of the essence for online feedback
(patient must be able to relate feedback to current brain state). Also, training
time should be short to avoid user frustration. BCI systems currently in use at
patients’ homes still rely on simple, linear methods such as discriminant analysis
(DA) or similar methods due to consistent and interpretable results.

Researchers are working towards increasing the information transfer rate by
increasing accuracy, speed, or number of classes of the classifier. This can involve
specialised preprocessing such as generating complex features (ICA, common
spatial patterns [46]) or feature selection methods (such as stochastic, genetic
algorithms or recursive feature elimination [47]). Specialised classification algo-
rithms are nonlinear methods such as SVM, ANN, LVQ and decision trees. An
overview is given in [48].

Slow cortical potentials and DA were used for classification to enable the
first ALS patient to communicate a message with a BCI spelling device [49]. A
three-class speller for communication using DA was tested with three healthy
subjects who reached an average of 2 letters/min [50]. A BCI was successfully
combined with functional electrical stimulation (FES) of forearm muscles to
allow a paraplegic patient to regain use of his hand [51]. Wheelchair control,
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which would enhance mobility of ALS patients, is a problem which could be
solved in the coming 3 years.

Many research groups have successfully completed studies with invasive tech-
niques for control and movement prediction in monkeys. Linear methods and
ANN were used to predict hand trajectories with MEA implants in 2 primates [52].
Monkeys have used neural control to move a cursor onto a target [53]. Amongst
other methods, SOM was used to generate control signals [54]. In humans, first
communication successes using ECoG grids were achieved with subjects who
obtained an ECoG implant to monitor epileptic activity [17, 18].

6 Conclusion

In this paper, an overview regarding MMI focusing three topics has been given:
spike sorting, functional neuroelectrical stimulation and brain computer inter-
faces. Even though in all these areas linear methods have been successfully
applied, ANN and ML have been investigated as well in order to ameliorate the
approaches. For example, BCI combined with FNS/FES of leg muscles for gait
rehabilitation could become a future application, but is still far from reach due
to the fine-grained control needed which may be provided by ANN/ML. In most
cases, ANN and/or ML have been shown to be superior compared with classical
methods. Thus, we predict that, in due course of time, ANN/ML will become
essential to MMI-applications.
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[44] T.N. Lal, M. Schröder, J. Hill, H. Preissl, T. Hinterberger, J. Mellinger, M. Bogdan, W.
Rosenstiel, T. Hofmann, N. Birbaumer and B. Schoelkopf, A Brain Computer Interface
with Online Feedback based on Magnetoencephalography. In L. De Raedt and S. Wrobel,
editors, Proceedings of the 22nd International Conference on Machine Learning ICML,
pages 465-472, 2005.

[45] Marg, E. and Adams J. E., Indwelling multiple micro-electrodes in the brain, Electroen-
cephalogr Clin Neurophysiol, 23(3):277-280, 1967

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

39



[46] J. Müller-Gerking, G. Pfurtscheller and H. Flyvbjerg, Designing optimal spatial filters
for single-trial EEG classification in a movement task, Clin. Neurophysiol., 110(5):787-
98, 1999
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