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Abstract. The estimation of mutual information for feature selection is
often subject to inaccuracies due to noise, small sample size, bad choice of
parameter for the estimator, etc. The choice of a threshold above which
a feature will be considered useful is thus difficult to make. Therefore,
the use of the permutation test to assess the reliability of the estimation
is proposed. The permutation test allows performing a non-parametric
hypothesis test to select the relevant features and to build a Feature Rel-
evance Diagram that visually synthesizes the result of the test.

1 Introduction

Selecting features before building a neural model is theoretically useless : the
model will set to zero the weights corresponding to unrelevant inputs. However,
in practive, it is important to reduce as much as possible the dimensionality of
the input space to avoid convergence problems, overfitting, etc.

One possible way to select the features that are relevant for a classification or
function approximation problem, is to assign each feature individually a statis-
tical relevance measure, independently from the model subsequently used, and
then to select those features that are above a certain threshold. This is often
referred to as the filter approach, or the feature ranking approach.

Mutual information is a non-parametric measure of relevance ; it is derived
from information theory. It is powerful (since it is non-parametric) though dif-
ficult to estimate (because it is non-parametric). Hence, the estimation of the
mutual information can be noisy, unreliable, biased, in cases of small sample
size, bad choice of the parameter of the estimator, etc. As a consequence, the
choice of a sound threshold is very difficult to make.

To overcome this limitations, the permutation can be applied to the mu-
tual information; this allows (1) selecting a sound threshold resulting from a
hypothesis test and (2) detecting bogus estimations of the mutual information.

Section 2 will introduce problem of feature selection, the notion of mutual
information and the permutation test. Section 3 will present the combined
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approach of mutual information and permutation test to feature selection ; ex-
amples are given in Section 4.

2 Background

2.1 The problem of feature selection

The problem of feature selection is : given X = (X1, · · · , Xd) an input random
vector and Y an output random variable, find the subset of indices of the Xi

that are most relevant to predict the value of Y [1].
Instead of considering all 2d possible subsets, we will consider ranking fea-

tures individually, and choose the k most relevant variables. This approach is
sub-optimal with respect to the objective, however it is computationally much
less demanding. Its main drawbacks is that (1) it might choose more variables
than necessary because it does not take redundancy into account, and (2) it will
miss variables that are relevant together although useless individually. Another
approach, more elaborate yet still sub-optimal, is to use the mutual information
with a forward-backward subset search strategy [2, 3]. This approach is not
considered here, although the proposed procedure could be straightforwardly
extended to be applied in such situations.

The crucial elements of the feature ranking approach are (1) to estimate the
relevance of a feature and (2) to choose the number of features to keep.

2.2 The Mutual Information

The mutual information of two random variables Xi and Y is a measure of how
Y depends on Xi and vice versa. It can be defined from the entropy H(.) :

MI(X ; Y ) = H(X) + H(Y ) − H(X, Y ) = H(Y ) − H(Y |X) (1)

where H(Y |X) is the conditional entropy of Y given Xi. In that sense, it
measures the loss of entropy (i.e. loss of uncertainty) of Y when Xi is known.
If xi and Y are independent, H(X, Y ) = H(X) + H(Y ), and H(Y |X) = H(Y ).
In consequence, the mutual information of two independent variables is zero.

For a continuous random variable Xi, the entropy is defined as

H(X) = −
∫

pXi(ξ) log pXi(ξ) dξ

where pXi is the probability distribution of Xi. Consequently, the mutual infor-
mation can be rewritten, for continuous Xi and Y , as

MI(X ; Y ) =
∫∫

pXi,Y (ξ, ζ) log
pXi,Y (ξ, ζ)

pXi(ξ) · pY (ζ)
dξdζ, (2)

it corresponds to the Kullback-Leibler distance between pXi,Y (ξ, ζ) the joint
probability density of X and Y and the product of their respective marginal
distributions. In the discrete case, the integral is replaced by a finite sum.
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The mutual information can be estimated from two vectors of sample xi

and y from both (1) and (2) using nonparametric density estimation techniques
like histograms, kernels, splines or nearest neighbors [4]. It should be noted
that all the above mentioned techniques depend on some parameter, like the
number of bins for the histogram, the width of the kernel for kernel based density
estimation, the number of nearest neighbors for the methods based on nearest
neighbors, etc. The choice of that parameter has often to be made ’blindly’, that
is without any reliability measure for the choice of the parameter. Nevertheless,
the estimation can be very sensitive to that parameter, especially in small noisy
samples conditions. If some inadequate value is chosen, it can sometimes lead
to estimations of the mutual information that are consistently negative for each
feature!

2.3 The Permutation test

Although model selection-like approaches (hold out estimates, cross-validation)
could be used to test the parameters, we propose to use the permutation test
that allows a formal hypthesis test and provides an automatic threshold. The
permutation test is a nonparametric hypothesis test [5] over some estimated
statistic θ̂ involving xi and y, which can be a difference of means in a classification
context, or correlation, etc. Let θ̂i be the value of the statistic for the given xi

and y, both vectors of size n. The aim of the test is to answer the following
question : how likely is the value θ̂i given the vectors xi and y if we suppose
that they are independent and thus that the statistic θi should be zero?

The permutation test considers the empirical distribution of xi and y to be
fixed, as well as the sample size. The random variable of interest is the value
of the statistic θ. In such a framework, the distribution of θ̂ is the set of all
values of θ̂k for all n! possible permutations of the elements of the vector xi, or,
equivalently, all permutations of the elements of the vector y. The P-value α
associated to the test is the proportion of θ̂k that are larger than θ̂i.

In practice, the number of all permutations n! can be too large to be tractable;
then a subsample of the distribution of θ can be considered ; some permutations
are randomly drawn. This is sometimes called the Monte-Carlo permutation
test, or the randomized permutation test. In this case, the exact P-value cannot
be known ; rather a 95% confidence interval around the observed P-value can
be estimated as [6]

95%confidence interval = α ± 1.96 ·
√

α(1 − α)
M

where M is the number of random permutations that are considered.

3 When the permutation meets the mutual information

Fusioning both methods will allow (1) to automatically test the significance of
the mutual information and (2) to automatically assess the accuracy of its esti-
mation. In other words, it will help deciding for which variables the measure of
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mutual information is significantly larger than zero, and how good the estimation
of mutual information is.

3.1 The procedure

Let xi be the vector whose jth component is the value of the ith feature of the
jth observation. The length of xi is n the sample size. The procedure is as
follows :

1. Choose a significance level α.
2. Choose a number of random permutations M .
3. Choose a mutual information estimator mi(·, ·; k).
4. For each variable xi

5. Compute θ̂i = mi(xi, y; k)
6. Build Θi = {mi(πxi , y; k)|πxi is a random permutation of xi}
7. Find θc the 100(1 − α)th percentile of the sample Θ
8. If θi < θc discard the feature
9. Estimate μi and σ2

i respectively the mean and variance in Θ

If the estimated bias (the average of the μi) and/or variances (averages of
σ2

i ) of the estimator are considered too large compared with the empirical dis-
tribution of the mutual information, another estimator is chosen (i.e. another
technique or the same technique with another parameter value k), and the proce-
dure is resumed from step 4. The number of permutations M allows to estimate
a confidence interval around the significance level.

3.2 The feature relevance diagram

The feature diagram presents in a visual manner the information brought by
the permutation test ; it consists in a plot where the horizontal axis represents
the variable index, and the vertical axis is the mutual information. For each
variable, three elements can be depicted :
1. The value of the mutual information between this variable and the output,
2. A box-plot of the mutual information (from the permutation test)
3. The value of the 100(1-α)th percentile
The value of the mutual information is depicted on Figure 1. as a ‘diamond’.
The horizontal edges represent the 25th and 75th percentiles. The bar in the
box is the median. The plusses are ‘outliers’ of the distribution.

Another quantity of interest is the value of the mutual information of y with
itself. The latter value actually corresponds to the entropy of the variable Y and
gives an upper bound on the possible values of the mutual information. If some
variable has a mutual information close to that value, then it can be used alone
and gives good results for approximation.

The diagram gives a visual representation of the relevance of each variable.
All variables for which the mutual information falls into the box-plot of the
permutation test can be assumed useless. The relevance diagram furthermore
allows to visually estimate the bias and variance of the estimator, respectively
with the position of the medians and the sizes of the boxes.
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Variable Mutual Critical Decision
information value

X1 0.0509 0.0401 Keep
X2 0.0591 0.0360 Keep
X3 0.0583 0.0298 Keep
X4 0.2184 0.0395 Keep
X5 0.0762 0.0590 Keep
X6 0.0163 0.0332 Discard
X7 0.0063 0.0473 Discard
X8 0.0093 0.0517 Discard
X9 0.0259 0.0389 Discard
X10 0.0129 0.0438 Discard

Fig. 1: (and Table 1) Mutual information measurements (diamonds) and thresholds (up-
permost ’plus’) for the ten variables. Only the first five have been used in the model. As
expected, according to the permutation test, they are the only useful ones.

4 Examples

We will consider a synthetic prediction problem, derived from Friedman’s [7].
We consider 10 input variables Xi and one output variable Y such that

Y = 10 sin (X1 · X2) + 20 (X3 − 0.5)2 + 10X4 + 5X5 + ε

All Xi, 1 ≤ i ≤ d are uniformly distributed over [0, 1], ε is a normal random
variable with variance σ2 = 1. Variables X6 to X10 are just noise and have no
predictive power. Sample size n is 500. The estimation of mutual information
is achieved with histogram-based techniques.

4.1 Selecting features automatically

The measured values for the mutual information are given in the second column
of Table 1. Except for X4, all variables seem to have a low mutual information
with the output Y . Nevertheless, we know that the first five are used to build the
output. The permutation test allows to set a quite precise decision threshold.
It was chosen here to be the largest observed value of the permutation test,
with M = 1000 permutations performed. The P-value of the test belongs to the
interval [0, 0.062] with 95% probability.

Table 1 shows that if the decision to keep or discard a given feature according
to the test whether the mutual information is larger than the critical value, all
the variables included in the model are selected while the others are dismissed.

4.2 Detecting bogus mutual information estimation

We illustrate the use of the permutation test to detect bogus estimation of mutual
information, or at least decide for instance which of two estimators to use. To
this end, we reduce the sample size to n = 200 in order to be able to perceive a
difference between estimations made with different histogram bin numbers.
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Fig. 2: Relevance diagram for estimation of mutual information with 4 (left) and 10 (right)
bins. The variance of the estimator is lower with 4 bins than with 10 bins.

In the previous example, using 10 bins was perfectly fine ; however, with less
than half the same number of samples, 10 bins is not optimal. Figure 2 shows
the relevance graph for 4 and 10 bins respectively. The variance of the estimator
with 10 bins (7.82e-4) is much larger than with 4 bins (1.37e-4), indicating that
the 4 bins are more appropriate than 10 bins.

5 Conclusion

The permutation test can be used in conjunction with mutual information to
select relevant features for a prediction problem, automatically defining a sound
threshold on the value of the mutual information to decide which features to
select and which to reject. The permutation test is also usefull to detect when
the estimation of the mutual information is not accurate. The procedure could
be extended to cope with iterative feature selection procedures based on the
mutual information.
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