
OnlineDoubleMaxMinOver: A Simple
Approximate Time And Information Efficient
Online Support Vector Classification Method

Daniel Schneegaß1,2,3, Thomas Martinetz1, and Michael Clausohm2

1- University at Luebeck, Institute for Neuro- and Bioinformatics,
Ratzeburger Allee 160, D-23538 Luebeck, Germany

2- Clausohm Software GmbH, {CIRCLE Development,Executive Board},
Neubrandenburger Straße 46, D-17039 Neverin, Germany

3- Siemens AG, Corporate Technology, Learning Systems,
Otto-Hahn-Ring 6, D-81739 Munich, Germany

Abstract. We present the OnlineDoubleMaxMinOver approach to ob-
tain the Support Vectors in two class classification problems. With its
linear time complexity and linear convergence the algorithm achieves a
competitive speed. We approach the problem of the impossibility of per-
fect non trivial online Support Vector Learning by parameterising the ex-
actness. Even in the case of linearly inseparable data within the feature
space the method converges to a solution expressible by a finite amount
of information while observing an arbitrarily large number of input vec-
tors. The results of the online method are comparable to the batch ones,
occasionally even better.

1 Introduction

The Support Vector Machine [1, 2] became a sophisticated and widely used tool
for classification and regression tasks. Many fast and robust methods to calcu-
late the Support Vector solution were invented. We want to mention especially
the work of Platt [3] and Anlauf and Biehl [4] which has some similarities to
MaxMinOver. The Sequential Minimisation Optimisation algorithm holds to be
the fastest batch learning method in practice for classification as well as regres-
sion tasks.

Online learning for Support Vector Machines is characterised by a principle
problem. By geometrical arguments it can be seen immediately that in the worst
case the maximal margin hyperplane depends on all visited input vectors of the
convex hulls of both classes. Especially in high-dimensional spaces the amount
of vectors belonging to the convex hull is asymptotically as big as the number of
data vectors. But the solution itself can be formed by only a few data vectors,
the so-called Support Vectors. It is always easy to construct a trivial online
learning method, which simply adds each new observed input vector to the set
of all other already observed data vectors and calculates the next batch Support
Vector solution. Using any batch method with time complexity Θ(T ) would
lead to an online learning method with complete time complexity Θ(lT ) after
observing l samples. Obviously this is not at all satisfactorily. Only if the convex

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

575



hulls of both classes contain just an asymptotically sufficiently small number of
input vectors, e.g. a constant one, then the calculation of the participation in the
convex hull of a new observed input vector, that is solving a linear programming
problem, is of course possible in constant time as well. If not, then it is principally
not possible to obtain the exact Support Vector solution with a time complexity
of o(lT ′) with Θ(T ′) as the time complexity of the fastest batch learning method.
All methods like e.g. [5] lead only to approximate solutions, all like [6] need at
least linear time per iteration.

2 Support Vector Classification

A data set X ∈ R
n and its labels Y ∈ {−1, 1}n are given. The goal is to find

a vector w and a scalar b which realise classification using the function f(x) =
sign(wT x + b) holding ∀i : f(xi) = yi. Apart from its norm a unique vector
w∗ = arg max‖w‖=1 mini yi(wT xi + b) provides the maximal margin solution,
whose class separating hyperplane has the largest possible distance to its closest
input vectors. This is identical to wT w = min,∀i : yi

(
wT x + b

) ≥ 1.
Using the well-known Lagrange formalism it turns out that the solution of

the weight vector can be written as w =
∑l

i=1 αiyixi, where αi are the La-
grange coefficients with every strictly positive αi representing a hard constraint
and, therefore, a Support Vector which is classified most critically. Hence, it is
possible to write the classifier finally as

f(x) = sign

(
l∑

i=1

αiyixT
i x + b

)
.

Important is the fact that the inner product xT z can be substituted by a sym-
metric and positive definite kernel K(x, z) = 〈Φ(x), Φ(z)〉 which implicitly trans-
forms the input space into an appropriate feature space. In the case of linearly
non-separable data sets within the feature space it is necessary to find a pos-
sibility to tolerate slight errors. This can be achieved by introducing so-called
slack variables and modifying the optimisation problem to e.g.

wT w + C‖ξ‖2
2 = min

∀i : yi

(
wT xi + b

) ≥ 1 − ξi.

This special error model leads to a modified kernel K ′(xi,xj) = K(xi,xj) +
δi,j

C with δ as the Kronecker symbol, which is essentially the same as is used
in kernalized Ridge Regression [2]. Hence, straightforwardly any Hard Margin
Support Vector method can be directly extended to an appropriate Soft Margin
method by using this error model.

3 DoubleMaxMinOver

The MaxMinOver method [7] is a simple and easy implementable incremental
but batch learning algorithm to obtain the Support Vector solution in classifi-
cation tasks. It is based on the MinOver algorithm [8] which converges to the

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

576



maximal margin solution. The MaxMinOver method is extended by a so-called
dememorisation criterion which leads to a removing of input vectors which are
proven not to be Support Vectors.

The DoubleMaxMinOver algorithm is in turn an extension of MaxMinOver.
In each iteration step the worst and the best classified input vectors of each class
have to be searched. Then the corresponding Lagrange coefficients αi1,min and
αi−1,min of the worst input vectors are each incremented by one, if the integrated
dememorisation criterion is not fulfilled. Otherwise these coefficients are incre-
mented by two and the αi1,max and αi−1,max of the best classified input vectors
are each decremented by one (as long as αi1,max , αi−1,max > 0). Apparently, the
algorithm needs linear time for each iteration. Furthermore, a linear convergence
speed in the exactness of w∗ measured as E = sin ∠ (w∗,w) was proven. Due
to the limited space we have to refer to [7, 8, 9] for further details.

4 OnlineDoubleMaxMinOver

4.1 The Hard Margin Case

As already mentioned above, in online Support Vector Learning there exists a
basic problem. The order of observed input vectors can be unfavorable. In
general the trivial approach of calculating the new Support Vector solution by
taking the interim set of Support Vectors and the new input vector does not
lead to correct solutions. On the contrary, it is necessary to take asymptoti-
cally all already observed input vectors into account. This problem has to be
incorporated in DoubleMaxMinOver as well.

Hence, in the hard margin case we simply extend the dememorisation crite-
rion. We introduce a new parameter A ≥ 1 and decide input vectors xi1,min re-
spectively xi−1,min definitely not to be Support Vectors, if wT (xi1,max −xi1,min) >
4AR2, respectively wT (xi−1,min − xi−1,max) > 4AR2 with R as an upper bound
of the greatest distance within the feature space between two input vectors of
both classes. Then these vectors will be removed. The larger A, the more exact
is the obtained solution.

The time complexity of the OnlineDoubleMaxMinOver algorithm remains
linear, if the number of Support Vectors is bounded by a constant D(X,K),
e.g. by theoretical propositions [1]. This can be seen as follows. After a finite
number of steps the dememorisation criterion will not be fulfilled only by current
approximate Support Vectors [7]. The number of approximate Support Vectors
is bounded by a constant as well, because the considered data set X̂ ⊂ X is a
subset of the complete input set X1. So after a finite number of observations only
a constant number of potential Support Vectors has to be taken into account.
With a general number nSV of approximate Support Vectors the time complexity
finally is O(nSV l).

1E.g. the number of the so-called essential Support Vectors is bounded by n ≤
“

R2

(δ∗)2
, d

”
,

where R is the radius of the sphere containing all input vectors, δ∗ the margin, and d the
dimension of the feature space [1]. By removing some input vectors, the inequality apparently
remains valid.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

577



4.2 The Soft Margin Case

The Soft Margin case is much more complicated. If one uses the common error
model described above, or a comparable one, then the number of Support Vectors
is in general a fraction of the whole number of observed input vectors. This
fraction depends on the parameter C. That is, the number of Support Vectors
nSV → ∞ will be arbitrarily large with an arbitrarily large number of observed
input vectors l → ∞. Therefore, the error model has to be changed slightly with
the goal of bounding the number of Support Vectors by a constant, independent
of the number of observations.

First of all, in the case of an infinite number of observations the above primal
optimisation problem can be generalised to a continuous problem as

‖w‖ + C‖ξ‖2
L2

= min

∀x ∈ X : y(x)(wT x + b) ≥ 1 − ξ(x),

which in the dual perspective leads to the modified kernel K ′(x, z) = K(x, z) +
δ(x,z)

C with δ(x, z) = δ(x − z) as the Dirac function. By weakening its hardness
to

δ(x, z) =
{

d(x − z) : y(x) = y(z)
0 : y(x) �= y(z)

e.g. d(x) =
√

ne−nxT x with an appropriate parameter n we obtain the Kernel
enlargement defined as

δK(x, z) =
{

d(Φ(x) − Φ(z)) : y(x) = y(z)
0 : y(x) �= y(z)

d(Φ(x) − Φ(z)) =
√

ne−n(Φ(x)−Φ(z))T (Φ(x)−Φ(z))

=
√

ne−n(K(x,x)+K(z,z)−2K(x,z)).

If δ = δ1 + δ−1 can be formulated as the sum of two autocorrelations of positive
functions f1, f−1 ∈ L2, then the feature space constructed this way can be
formulated in terms of the transformation function Φ̂ : X → (Φ(X) × (Φ(X) →
R) × (Φ(X) → R)) as follows

Φ̂(x) = (Φ(x), z → f1(Φ(x), z), z → f−1(Φ(x), z))
fa(x, z) = fa,x(x − z) ≥ 0
fa,x(x′) = 0, y(x) �= a∫

Φ(X)

fa,x(x − z)fa,x′(x′ − z)dz =
{

d(x − x′) : y(x) = y(x′) = a
0 : y(x) �= a ∨ y(x′) �= a

= δa(x,x′).

The method always converges, because by construction at least the weight vector

w = (w′,w1,w−1) ∈ (Φ(X) × (Φ(X) → R) × (Φ(X) → R))
∀a ∈ {1, . . . , D} : w′

a = 0
∀a ∈ {−1, 1} : wa = (x → a)

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

578



separates the two classes within the Soft Margin feature space correctly.
In the primal perspective this modification leads to a low-pass filtering of the

slack variables by d. Together with some requirements on that function and the
closeness of the input vector’s support indeed the number of Support Vectors is
bounded by a constant. Intuitively, any chosen Support Vector x with a non zero
ξ(x) shares the error with its direct neighbors and therewith already “pays” for
them. Then these neighbors may not be taken into account as Support Vectors
anymore. Due to the lack of space we cannot illustrate it in a formal way.

Algorithm 1 The C2-OnlineSoftMaxMinOver Algorithm
Require: given generator P : N → R

d × {1,−1} creating set of input data and parameter C, R an
upper bound for the greatest distance within the feature space between two input vectors of both
classes, A an appropriate factor regularising the exactness of the solution

Ensure: calculates a soft margin hyperplane given in dual representation

set K′(x, z) = K(x, z) +
δK (x,z)

C , t ← 0, x ← nil, y ← nil, α ← nil, l ← 0
while the desired precision is not reached do

set t ← t + 1, l ← l + 1, (xl, yl) ← P (t), αl ← 0
if it exists i with yi = 1 and it exists i with yi = −1 then

find i1,min = arg mini,yi=1
Pl

j=1 αjyjK′(xj , xi)

find i−1,min = arg maxi,yi=−1
Pl

j=1 αjyjK′(xj , xi)

find i1,max = arg maxi,yi=1,αi>0
Pl

j=1 αjyjK′(xj , xi)

find i−1,max = arg mini,yi=−1,αi>0
Pl

j=1 αjyjK′(xj , xi)

if
Pl

i=1 αiyi

“
K′

“
xi, xi1,max

”
− K′

“
xi, xi1,min

””
> 4R2 then

set αi1,min ← αi1,min + 2 and αi1,max ← αi1,max − 1

else
set αi1,min ← αi1,min + 1

end if

if
Pl

i=1 αiyi

“
K′

“
xi, xi−1,min

”
− K′

“
xi, xi−1,max

””
> 4R2 then

set αi−1,min ← αi−1,min + 2 and αi−1,max ← αi−1,max − 1

else
set αi−1,min ← αi−1,min + 1

end if

for all i, yi

Pl
j=1 αjyj

“
K′(xj , xi) − K′

“
xj , xiyi,min

””
> 4AR2, αi = 0 do

remove xi, yi and αi and set l ← l − 1
end for

end if
end while

set b ←
“Pl

i=1 αi

Pl
j=1 αjyjK(xi, xj)

” “Pl
i=1 αi

”−1

5 Experiments and Conclusion

We tested OnlineDoubleMaxMinOver and compared it with its batch version
on the repository of the Fraunhofer Institute [10], whose performance has been
compared convincingly with the state-of-the-art, the SMO-algorithm [3], in [9].
Table 1 shows that the online version is comparable to its batch version. As long
as the width of the low-pass filter is small enough, the results are even better.
But this has to be paid by a slightly larger number of Support Vectors.

We showed that OnlineDoubleMaxMinOver is a very simple approximate
online Support Vector Learning method. As its batch version it is furthermore
very efficient in running time and can therefore be used for a wide range of
practical applications where online learning is an important requirement.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

579



Table 1: Comparison of the classification results of C2-SoftDoubleMaxMinOver
as batch and online method on standard benchmarks. The results are averaged
over different σ and C. The Gaussian Kernel was used. Low-passes are the Delta
Kernel, which is actually an all-pass and the Gaussian Kernel. σK is the width
of the low-pass and ε the width of a Gaussian noise on the input data.

Parameter Results

Batch/Online No. Iter. Low-pass σK ε errTrain errTest nSV

Batch 1000 0.12 0.30 350
Batch 5000 0.12 0.30 356
Online 5000 Delta 0 0.11 0.29 377
Online 10000 Delta 0 0.10 0.28 383
Online 5000 Gaussian 0.0002 0 0.10 0.28 372
Online 5000 Gaussian 0.001 0 0.11 0.29 371
Online 5000 Gaussian 0.005 0 0.11 0.28 363
Online 5000 Gaussian 0.01 0 0.12 0.29 363
Online 5000 Gaussian 0.05 0 0.14 0.31 352
Online 5000 Gaussian 0.1 0 0.14 0.31 339
Online 5000 Gaussian 0.0002 0.01 0.14 0.30 379
Online 5000 Gaussian 0.001 0.01 0.14 0.31 374
Online 5000 Gaussian 0.005 0.01 0.14 0.31 372
Online 5000 Gaussian 0.01 0.01 0.14 0.31 368
Online 5000 Gaussian 0.05 0.01 0.15 0.32 359
Online 5000 Gaussian 0.1 0.01 0.17 0.33 350

References

[1] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Cambridge University
Press, Cambridge, 2000.

[2] Nello Cristianini and John Shawe-Taylor. Support Vector Machines And Other Kernel-
based Learning Methods. Cambridge University Press, Cambridge, 2000.

[3] John C. Platt. Fast training of support vector machines using sequential minimal opti-
mization. In Advances in kernel methods: support vector learning, pages 185–208. MIT
Press, Cambridge, MA, USA, 1999.

[4] J. K. Anlauf and M. Biehl. The adatron: an adaptive perceptron algorithm. Europhys.
Lett., 10:687–692, 1989.

[5] Liva Ralaivola and Florence d’Alché Buc. Incremental support vector machine learning:
A local approach. In ICANN, pages 322–330, 2001.

[6] Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector
machine learning. In NIPS, pages 409–415, 2000.

[7] T. Martinetz. Maxminover: A simple incremental learning procedure for support vector
classification. Proc. of the International Joint Conference on Neural Networks (IEEE
Press), pages 2065–2070, 2004.

[8] T. Martinetz. Minover revisited for incremental support-vector-classification. Lecture
Notes in Computer Science, 3175:187–194, 2004.

[9] Thomas Martinetz, Kai Labusch, and Daniel Schneegass. Softdoubleminover: A simple
procedure for maximum margin classification. Proc. of the International Conference on
Artificial Neural Networks, pages 301–306, 2005.

[10] http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

580


