ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

Nonlinear dynamics in neural computation

Tjeerd olde Scheper and Nigel Crook

School of Technology - Department of Computing
Oxford Brookes University, Wheatley Campus, Oxford - United Kingdom

Abstract.  This tutorial reports on the use of nonlinear dynamics in
several different models of neural systems. We discuss a number of dis-
tinct approaches to neural information processing based on nonlinear dy-
namics. The models we consider combine controlled chaotic models with
phenomenological models of spiking mechanisms as well as using weakly
chaotic systems. The recent work of several major researchers in this field
is briefly introduced.

1 Introduction

The use of nonlinear dynamics in models of neural systems has been studied
for over a decade. Both experimentalists as well as theorists have investigated
and proposed different mechanisms which would allow nonlinear dynamics to be
used [1, 2]. Although the existence of chaos in neuronal systems appears to be
not in doubt [3], the possible role of chaos is still under discussion [4, 5, 6]. In
particular, the possible use of chaos at the core of information processing has
been considered to be potentially useful [7, 8]. Even though much is now known
about chaotic systems, their synchronisation and control, the next step of re-
lating information to a stable state contained in a (controlled) chaotic system
appears elusive. (For a detailed explanation of chaotic control and synchronisa-
tion see [9, 10, 11, 12, 13]). In this tutorial, we will explore several systems which
provide support for the use of controlled chaotic systems as dynamic filters and
transient information processing.

2 Emergent behaviour

Some recent developments in chaotic neural models is the application of con-
trolled chaotic systems in autonomous models. The introduction of purely
chaotic systems in any neural model is feasible, however, these tend to become
either indistinguishable from stochastic systems or have only a particular feature
of the chaotic model which is included in the resulting dynamics. Controlling
specific unstable periodic orbits, upon presentation of input, such that they are
reliably correlated to that particular input seems to be complicated. In many
cases targeting the control towards a particular solution requires non-biologically
relevant mechanisms.

Instead of applying control of a chaotic system upon input, the control can be
employed continuously, in other words, the chaotic system is always under some
form of control. The system becomes therefore stable periodic, even though the
controlled model is only unstable periodic. The possible advantages are that the
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system is only semi-stable, i.e. only during the time that control is effective has
it stable properties. When the control is not effective, for example when the
control function is close to zero, the system does not exhibit chaotic properties
but can be perturbed into different trajectories.

2.1 Dynamic patterns

To show how a dynamic behaviour may emerge from controlled chaoticly driven
neurons a neuron model been derived from the Hindmarsh-Rose (HR) model
[14] but includes a slow recurrent equation which represents the slow calcium
exchange between intracellular stores and the cytoplasm [15]. This makes the
modified Hindmarsh-Rose model (HR4) more like a chaotic Hodgkin-Huxley
(HH) model of stomatogastric ganglion neurons [15]. In addition to the slow cal-
cium current, an additional inactivation current has been added to this model,
which competes with the third current to return the system to the equilibrium
state. The third equation of the HR4 model is complemented with a fifth equa-
tion resulting in the five dimensional Hindmarsh-Rose model (HR5). The effect
of the faster inactivation current zy (4), compared to the slower inactivation cur-
rent as used in HR4, is that the system tends to burst less. The faster current
makes the system return quickly towards the equilibrium where only a larger
(re)activation current can cause the system to burst. In this model, the HR5
system allows the temporal separation of spikes by increasing the refactory pe-
riod. Parameter values arte a = 1, b =3, c=1,e =1, f =5, g = 0.0275,
u = 0.00215, s = 4, v = 0.001, £k = 09573, r = 3.0, m =1, n = 1,5¢ =8,
sy, = 1, ny = 4,dy = 0.5, with rest-potential zo = 1.605 and variable input
I. With these parameter values the model is stable in the resting potential but
shows low dimensional chaos in the bursting patterns.
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To introduce controlled chaotic behaviour in either the four dimensional HR4
system or the five dimensional HR5, a scaled and inverted Rdossler system has
been used [16]. This is necessary because the normal Rossler model has a dif-
ferent time scale from the HR4 model but the scaled variables are proportional
to the normal Rossler parameter values. It is possible to map the time scale of
the modified Rossler (R3) model to fit the time scale of the HR4 model and use
the R3 system to generate patterns. In addition to the scaling, the u, variable
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has been inverted to enable the convenient use of this variable as the drive for

the HR4 model. Parameter values are a, = %, b, = 1—15, Cr = %, d, = %,
k. = —0.57, w, = —7—15 and p, = —1.
dz,
= *br r dr r 6
Fr y u (6)
d
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The R3 system is controlled into an unstable periodic orbit using a chaotic
rate control mechanism [17]. This mechanism allows the system to exhibit dif-
ferent periodic orbits by limiting the rate of change of equation (8). The rate
control variable o is only different from 1 if the variables x and u are diverging
rapidly, i.e. when the chaotic manifold is stretching or folding. Equation (8) is
modified to (10) as shown below. The rate control parameter p determines the
strength of the rate limiting function and the parameter £ can have different val-
ues but is usually —2 < ¢ < 0. This chaotic control mechanism is very effective
at stabilising different unstable periodic orbits, but not for any given value of p
and . Typically used values are p =6 and £ = —1 or £ = —2.
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To demonstrate how these neuron models may exhibit emergent behaviour,
two neurons are connected via an electrical synapse with a constant weight.
Both neurons are driven by a controlled chaotic Rossler system stabilised into
the same periodic orbit. Additionally, the first neuron receives periodic input of
a square pulse at varying frequency. In the figures below, is shown the results
of driving the mini-network with a period of 40 Hz and 33.3 Hz respectively. In
all cases the chaotic control of the Rossler system is disabled at the beginning
of the experiment to demonstrate the purely chaotic firing pattern and enabled
at 500 ms. The control stabilises the system into a periodic orbit within a few
timesteps. The periodic external pulse to the first neuron is enabled throughout.

With an external input period of 40 Hz the first neuron fires aperiodically
before the control is enabled. After the control of the chaotic drive is enabled,
the first neuron fires in a seemingly multi-orbit which is almost stable (figure
1(a)). However, the second neuron which has the same controlled chaotic drive
as the first but receives input only from the first neuron ceases to fire (figure
1(b)). Changing the input frequency to 33.3 Hz, but leaving all else the same,
the first neuron exhibits a clear multi-orbit after control is enabled (figure 1(c))
with a period of 1290.9 ms. The second neuron has a different orbit with a
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similar period but fires only three times in one period (figure 1(d)). Note that
at 16.25 s, the second neuron fires four times but this is only a transient and
it will settle into the three spike pattern at 2 s (not shown). Even though the
neurons appear to be only semi-stable, in the sense that an element of noise or
a transient element is present in the results, the different emergent behaviour of
the second neuron is due to the response of the controlled chaotic neuron to the
different external input frequencies when filtered by the first neuron.
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Fig. 1: (a) Voltage of the first neuron after chaotic control is enabled with
external input of 40 Hz. (b) Voltage of the second neuron when control is enabled
at 500 ms, input to the first neuron is 40 Hz. (¢) Voltage of the first neuron
after chaotic control is enabled with external input of 33.3 Hz. (d) Voltage of
the second neuron after chaotic control is enabled with input to the first neuron
of 33.3 Hz.

2.2 Membrane Computational Units

One aspect of neural modelling which has been considered to be less relevant
to information processing is the signal conductance along the membrane. Us-
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ing cable models and compartmental models, the possible unique properties of
the membrane itself as computational unit are neglected. If we consider the
membrane as a dynamic system with localised adaptation, we can formulate a
membrane unit consisting of several components, such as ion channels and re-
ceptors, which together may act as a computational unit [18, 19]. With the aim
of simulating computational processes within a membrane computational unit
(MCU), we have build a phenomenological unit based on the Hindmarsh-Rose
and Roéssler models used above. Each model of an MCU has different compo-
nents that may act together to produce a system which is capable of complex
emergent behaviour. It generally consists of a spike generation component and
an optional controlled chaotic drive component, i.e. an HR5 or HR4 model with
or without R3 system.

By linking five computational units together a model may be built which
synchronised two seperate inputs (SyncMCU). Two units, HR4R3-1 and 2, are
made from four dimensional HR4 systems, driven by a controlled scaled Rossler
system R3. Another unit, HR5-AND, consists of a single HR5 system, without
a controlled chaotic drive, but electrically connected to units HR4R3-1 and 2.
A fourth unit, HR4-ANDNOT, consists of a four dimensional HR4 system but
with a scaled R3 drive. It receives input from units HR4R3-1 and 2. Lastly, the
fifth unit, HR4, is a normal HR4 system without R3 drive, that only receives
input from unit HR5-AND. All the R3 drive systems are controlled in the same
unstable periodic orbit but the driving scalar is small such that by itself it does
not cause the system to fire. The R3 systems may therefore act as a localised
subcellular clock that can be in or out of sync with other units.

This configuration may act as a detector of desynchronisation of two input
signals. Given an additional external input to the units HR4R3-1 and 2, which
are combined in unit HR5-AND and then passed on to unit HR4, the unit HR4-
ANDNOT will detect if unit HR4R3-2 fires but HR4R3-1 does not. Note that if
they both fire, HR4-ANDNOT does not fire unless it has fired recently. We can
now use this to attempt to synchronise unit HR4R3-2 with unit HR4R3-1 even
if they have completely different periods.

To enable unit HR4-ANDNOT to synchronise the units HR4R3-1 and 2, a
synchronisation function is defined as

% = /il(xi — mf)@(az) — KoS (11)

where k1 and k9 are the growth and decay parameters, x] are the z, variables of
the controlled chaotic scaled Rossler systems of the units that are synchronised.
The function 6(z) is a threshold function on the x variable of the HR4 system
of the unit HR4-ANDNOT. Parameters for (11) are k; = —0.75, k2 = 0.5 with
the threshold set at —0.5.

In the synchronised case, as shown in figures 2(c) and (d), the emerging
patterns are corrected by the synchronisation pulses HR4-ANDNOT unit and is
much less noisy than in the unsynchronised case (not shown).
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Fig. 2: SyncMCU model with synchronisation; (a) x variable of HR4R3-1; (b)
x variable of HR4R3-2; (¢) x variable of HR5-AND; (d) = variable of HR4-
ANDNOT

3 Transient computation

The term transient computation describes an approach to information process-
ing in which time dependent input signals cause a deviation in the dynamics
of a system. To enable computation, this deviation or transient must in some
sense be proportional to the input signal that caused it (see separation (SP) and
approzimation (AP) properties below). Devices which perform transient com-
putation in this way have recently received much interest. Most notable among
these in the context of neural computation are the liquid state machine (LSM)
developed by Maass [5], the echo state machine (ESM) developed by Jaeger
[20, 21], and the nonlinear transient computation machine (NTCM) developed
by Crook [6].

Both LSM and ESM approaches to transient computation use a recurrently
connected pool or reservoir of neurons which perform a temporal integration
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of input signals. An important aspect of these neural reservoirs is that they
constitute a fading memory; that is, input signals have a residual effect on the
dynamics of the reservoir which fades with time. The neural dynamics which
ensue after the input is presented to the reservoir are referred to as the liquid state
in LSMs or echo state in ESMs. There are two properties of these dynamic states
which are both necessary and sufficient for machines that perform real-time
computation using transient dynamics: They are the separation property (SP)
and the approzimation property (AP) [5]. The separation property guarantees
that two different inputs to the reservoir will result in two different transients in
the dynamics of the reservoir. Specifically, it assures that the degree of separation
in the corresponding transients in the dynamics of the reservoir is proportional
to the differences in the inputs.

Maass et al tested the separation property of the LSM through a series of
experiments using large numbers of randomly generated Poisson spike trains
in pairs u(-) and v(-) [5]. Each spike train was presented as input to the M
neurons in the reservoir in separate trials. The transients in the dynamics of the
reservoir 22 (+) and 22 (-) caused by u(-) and v(-) respectively were recorded in
each case. The average distance |2 (t) — xM (¢)|| between the two transients
in each pair was then plotted as a function of time. The measure of distance
d(u,v) between spike trains u and v is calculated by converting each spike train
to a convolution of Gaussians and using the Ly -norm as a measure of distance
between them. The convolution of Gaussians is constructed by replacing each
spike in the spike train by a Gaussian curve centered on the spike time using the
kernel exp(—(t/7)?) where 7 = 5ms. The Gaussians are summed to produce a
continuous curve over the length of the spike train.

The results given in [5] clearly show that the distance between the transients
evoked by input u(-) and v(-) is proportional to the distance between u(-) and
v(-) and is well above the level of noise (i.e. when d(u,v) = 0 and the differences
in the transience for u(-) and v(-) are caused solely by the differences in the initial
conditions of the reservoir). These results confirm that the LSM possesses the
required separation property SP.

The second necessary and sufficient condition for machines which perform
computations on dynamic transients is that they possess an approximation prop-
erty AP [5]. This property is concerned with the ability of the output mechanism
of the LSM to differentiate and map internal states of the reservoir to specific
target outputs. The output component of the LSM is a memoryless readout
map fM which transforms the state of the reservoir 2 (¢) to the output signal
yN(t) = fM(2M(t)) at each time step t. The readout map is implemented as a
set of N readout neurons, each of which is configured to signal the presence of a
recognised input pattern. Each readout neuron receives weighted instantaneous
input from all the neurons in the reservoir. The weights are devised using a
simple perceptron-like learning mechanism.

The readout mechanism is considered to be memoryless because it does not
have access to previous states of the reservoir caused by earlier inputs u(s)(s < t)
to the LSM. However, because the reservoir naturally acts as a fading memory,
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echoes of these previous states are contained in the current state 2 (t) of the
reservoir, and hence are available to the readout mechanism at each time step.

Maass et al demonstrate the approximation property AP of the LSM both
through theoretical results and experimental evidence [5]. One of these experi-
ments involved the classification of five prototype patterns each consisting of 40
parallel Poisson spike trains. Five readout modules were constructed each con-
sisting of 50 integrate-and-fire neurons. Each module was trained to respond to
one of the five prototype patterns. The training was done using 20 noisy versions
of each of the prototypes. During training, the initial state of the neurons in the
reservoir was randomised at the beginning of each trial. The results presented
in [5] demonstrate that the readout modules produces responses which correctly
differentiate between the five prototype patterns, thereby demonstrating that
the LSM possesses the approximation property AP.

Importantly, Maass et al present theoretical justifications to suggest that
there are no serious a-priori limits for the computational power of LSMs on
continuous functions of time [5].

An alternative approach to transient computation is presented by Crook [6].
Instead of using large pools of recurrently connected neurons, this approach, re-
ferred to as the nonlinear transient computation machine (NTCM), uses just two
neurons whose internal dynamics are weakly chaotic. This means that nearby
points in the phase spaces of these neurons will diverge at a relatively low expo-
nential rate. Consequently, the transients caused in the neuron’s dynamics by
similar inputs will initially evolve in a similar way. Only later in the evolution
will these transients begin to diverge significantly. The fact that these neurons
are weakly chaotic has important consequences on their ability to handle noise
[22]. More significantly, it has been shown by Bertschinger et al [23, 24] that sys-
tems that are on the edge of chaos possess extensive computational capabilities
(see below).

The NTCM is a novel device for computing time-varying input signals. It
consists of two coupled neurons, one of which acts as a pacemaker (denoted
Np) and the other provides the locus of the transients (denoted Np). The
purpose of the pacemaker (Np) is to lead the transient neuron (N7) into a
periodic firing pattern through synchronisation. While external input is being
presented to Np, the coupling from Np is temporarily removed. The external
input perturbs the internal state of Np which will subsequently evolve along a
transient away from the periodic firing pattern induced by Np. This transient is
reflected in the output spike train of Np. After the input has been presented the
coupling with Np is gradually restored and as Np begins to converge back to
the original synchronised periodic firing pattern, the effects of the external input
on its internal dynamics fade and eventually disappear. In this way the NTCM
possesses a fading memory similar to that found in LSMs and ESMs. Details of
the NTCM model are presented in [22, 6]. This tutorial will focus primarily on
the experimental evidence that demonstrates that the NTCM has the separation
(SP) and approximation properties (AP) which are both necessary and sufficient
for real-time computation using transient dynamics.
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Fig. 3: The separation property for (a) 1000 random inputs (b) average of the
1000 random inputs.

The following set of experiments demonstrate that the NTCM possesses the
property of separation SP. In these experiments the NTCM is presented with a
randomly generated spike train Sy of duration 100 time steps and consisting of
between 2 and 4 spikes. The corresponding spike output of N7 is recorded during
the time window [1..100]. 1000 randomized versions of Sy are then presented to
the NTCM and the response of N7 in each case is recorded for the same time
window. The random versions of Sy were constructed by introducing random
jitter to the timing of the spikes in Sy. The jitter involved shifting the timing of
spikes by from £1 to £20 time steps. The results from some of these experiments
are presented in Figure 3. The x axis of each graph represents the distance of
the randomized input spike trains from Sy calculated using the Ls-norm of the
convolution of Gaussians approach reported earlier. The corresponding value in
the y axis is the distance of the response of Np to the randomized spike train
from the response evoked by Sy. The times of the spikes for Sy are shown in the
header of each graph.

The results in Figure 3 show that increases in the distance between the
multiple spike input patterns given to the NTCM effect proportional increases
in the distance between the corresponding output spike trains of Np. This
suggests that the property of separation SP holds for the NTCM.

The approximation property AP of the NTCM is demonstrated by adding a
layer of readout neurons to the model. A unique feature of the readout mech-
anism used here is that not only will they signify the presence of a recognized
input pattern, but they will also give a rough indication of the level of noise
present in that pattern. This is done using the NTCM'’s ability to be both noise
robust and noise sensitive within the same output spike train as discussed in
[22].

The readout set is constructed using three Spike Response Model (SRM)
neurons [25], each sensitive to a particular sub-range (or zone) of the spike train
emitted by Np. The first SRM is sensitive to spikes in the first 100 time steps
of Np’s spike train. The second is responsive to spikes within the [50..150] time
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step window. The third is responsive to spikes in the [100..200] window. In [6]
has already been shown that the first 100 time steps of Np’s spike output is quite
robust to noise and that as the spike train evolves it becomes increasingly more
sensitive to noise. In the present model this would mean that all three readout
neurons should fire if the input closely matches the recognized pattern. As noise
is introduced in the input, the third readout neuron will cease to respond but
the other two should recognize the pattern. As the noise is increased further
the second readout neuron will also cease to respond but the first neuron should
continue to fire.

In these experiments the model is constructed by first presenting a prototype
pattern to be recognized as input to the NTCM. The spike train output of Ny is
then used to construct multiple time-delay connections from Np to each of the
readout neurons. The delays in these connections are devised so that the specific
timings of the output spikes that occur within the sensitive zone of each readout
neuron for this prototype input pattern have a coincident above-threshold effect
on that readout neuron.

The prototype patterns consist of five independent spike trains, each con-
taining up to 4 randomly timed spikes within the period [1..100]. Noisy versions
of the prototypes were constructed by adding jitter to the timing of each spike.
The jitter was determined using white Gaussian noise with a mean of 0.

The results of these experiments are presented in detail in [6, 22]. The results
demonstrate that readout mechanism consistently responded correctly to the
jittered versions of the prototype pattern even in the presence of strong noise.
Through these and other similar experiments the readout mechanism of the
NTCM consistently demonstrates an ability to differentiate and map transients
of the Np to specific target outputs, thereby indicating that the model possess
the required approximation property.

The relationship between the computational power of a system and its stabil-
ity has been the subject of much debate in recent years [26, 27, 28, 29, 30, 31, 24].
Some have argued that the computational properties of a system become optimal
as the dynamics of the system approach the edge of chaos; most notably Lang-
ton [28] and Packard [29] did some early work on this with cellular automata.
Packard studied the frequency of evolved cellular automata rules as a function of
Langton’s A parameter [28]. For low values of A the rules are attracted to a fixed
point. As A is increased, the rules settle down to form periodic patterns. As A is
further increased and it approaches a so called critical value A., the rules became
unstable and tended to have longer and longer transients. Packard concluded
from his results that the cellular automata rules which are able to perform com-
plex computations are most likely to be found at the near critical value A, where
the rule dynamics were on the edge of chaos. Mitchell et al [30] subsequently
showed that Packard’s conclusions from his particular experimental results were
unfounded.

The debate about computation at the edge of chaos has recently been revis-
ited by Natschléger et al [24] who studied the relationship between the computa-
tional capabilities and the dynamical properties of randomly connected networks
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of threshold gates. They proposed a measure of complexity which was maximal
for a network at the point of transition in its dynamics from periodic to chaotic.
Experimental results showed that this complexity measure was able to predict
the computation capabilities of the network extremely accurately. Specifically,
the measure showed that only when the dynamics of the network were near the
edge of chaos was it able to perform complex computations on time series inputs.

4 Conclusion

This tutorial has given an overview of recent work which places nonlinear dy-
namics at the heart of neural information processing. Naturally, it has not been
possible to cover all of the research that is being done in this area. For example,
we have not included the work of those who use chaos as a basis for neural itin-
erancy; which is a process involving deterministic search through memory states
[32]. Neither have we reported on the use of the bifurcating properties of specific
chaotic systems as a means of switching between neuronal states [33]. However,
we have attempted to include samples of work which focus at different neural
levels (membrane, cell and network), and have we tried to give a flavour of the
direction in which we see the field is moving.
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