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Abstract. A general approach introducing priors on the correlation function or 
equivalently power spectrum of the sources in the Blind Source Separation 
problem is presented. This prior modifies or constrains the contrast function that 
measures the independence of the recovered signals depending on its 
characteristics. Considering the case where the priors correspond to the sources 
that we are interested in recovering, the deflation approach is stated. This 
formulation is especially useful for those large-dimension problems where the 
ancillary sources are not needed to be estimated. We show its application to the 
biomedical problem of extracting the atrial activity from atrial fibrillation episodes, 
where discriminant information about the frequency content of the atrial activity 
with respect to the other components is available in advance. 

1 Introduction 

Blind Source Separation BSS consists of recovering the source signals from the 
observations obtained by mixtures of them. It is called blind because of nothing is 
assumed about the sources or the coefficients of the mixture but the statistical 
independence of the sources. However some assumptions are implicit in the model, 
such as: the sort of mixture (linear or non linear, instantaneous or convolutive, noisy 
or noise free), the dimensions of the problem (the size of the mixing matrix, i.e., the 
number of sources), at most one Gaussian source for algorithms based only on higher 
order statistics, non identical power spectra for algorithms based on second order 
statistics, i.e., exploiting the time structure, or the usual assumption of zero mean unit 
variance sources for simplification and fixing some indeterminacies. 
 In this paper we will follow the linear noise-free instantaneous mixing model: 
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where is the vector of observed signals, i.e., the mixtures, 

 the source vector and  the mixing matrix. The aim is 
recovering the sources from the only assumption of the statistical independence of the 
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where  are the recovered signals and B the demixing matrix. [ 1( ) ( ), , ( ) T
nt y t y t=y … ]

 When the mixing process (1) is not explicit, we call (2) the Independent 
Component Analysis ICA of . In the square case( )tx m n= , the recovered sources are 
the original ones up to a permutation, sign and amplitude indeterminacy, =y Ps , 
where P is a matrix that has one and only one nonzero entry in each row and column. 
 When additional knowledge is included in the model, the problem is no more 
called blind and sometimes some restrictions can be relaxed, such as . When 
information about the form of the densities is available, new approaches and ad hoc 
adaptations of classic algorithms can be obtained, e.g., when the sources are sparse 
[2]. We must note that some gradient based algorithms use component wise 
nonlinearities that include implicit priors about the pdf and the kurtosis of the sources, 
such as the Infomax algorithm [1]. But in this case we do not call them “priors”; if the 
algorithm fails, we simply say that the nonlinear function is not properly selected 
instead of talking about an incorrect prior. In fact, the sparseness is considered a prior 
in the literature but not the sign of the kurtosis in the selection of the nonlinearity, just 
because the former is formulated explicitly in the statement of the problem. Other 
usual source priors include its temporal structure [3] or the relaxation of the 
independence hypothesis [4]. Concerning the mixing matrix, priors can be modeled in 
a Bayesian approach [5], [6], or as constraints, being assumed some of the entries, 
e.g., due to the available information about the positions of sensors and sources, or 
being parameterized like in array signal processing. 

m n≥

 We focus in this paper in the case where there is prior information about the 
power spectrum of some sources, at least one. We find many real applications such as 
in communications or biomedicine where this knowledge is available but not used by 
BSS algorithms. In addition, in many of these applications, we are interested in 
recovering only some few sources, so an algorithm that first extracts the interesting 
sources imposing the prior knowledge is necessary. 
 In Section 2, a general approach including the information about the frequency 
content of the sources is set. Depending on the prior, it includes the modification of 
the objective function that measures the independence or the restriction of the 
possible solutions. In Section 3, we present a biomedical example where the prior 
consists on that the power of the interesting source is concentrated in some 
frequencies, showing the results in Section 4. 

2 Priors on the power spectrum of the sources 

In basic ICA, solving (2) requires the use of higher order statistics in a direct way, 
such as cumulants, or in a more subtle way such as nonlinear functions. This is 
because only the decorrelation of the observations is not enough, remaining an 
orthogonal separating matrix for being estimated. 
 BSS algorithms are usually carried out in two steps. First, a PCA stage, 
consisting of whitening spatially the observations and reducing the dimension of the 
problem, , where V is the nxm whitening matrix, so ( ) ( )t =z Vx t { }( ) ( )TE t t =z z I . 

Second, the remaining nxn orthogonal matrix W, , with WW( ) ( )t =s Wz t T=I, is 

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

332



calculated. The estimated mixing matrix is , where superscript T+=A V W + denotes 
the pseudoinverve matrix. 
 In this approach, nothing is said about the value of the covariance of the sources 
for non-zero lags. In other words, BSS algorithms not including the temporal 
information consider the data as mixtures of the samples of the independent random 
variables collected in the source vector s. This also means that scrambling the 
observations does not alter the solution and time index can be dropped because of the 
ordering of the observations is not important. 
 It is immediate to obtain the spatially whitened covariance matrices for different 
lags τ (we consider only real wide-sense stationary processes): 
 { }( ) ( ) ( ) ( )T TE t tτ τ= − =zR z z W R τs W  (3) 

 Algorithms based on (3) exploits the fact that { }( ) ( ) ( )TE t t ττ τ τ∀ = − =sR s s D , 

where 0τD  is a diagonal matrix whose element 0
iid τ is the covariance of the source i at 

lag τ0. In this case, higher order statistics are not required and consequent restriction 
of at most one Gaussian component disappears. On the other hand, the use of the 
power spectrum information of the sources requires that components must have 
different covariances. In conclusion, a dual property between solutions based on 
higher order statistics and second order time covariances arises: identical distributions 
but non Gaussian sources opposite to non identical spectra but Gaussian sources. 
 We are interested in the case where some prior about the characteristics of the 
covariance function of the sources is available. As we mentioned before, this extra 
information is only related sometimes to some few of the sources, usually the time 
series that we are interested in recovering, so a deflation approach to source 
separation is preferred. This approach will be very useful also in the case where the 
dimension of the problem is very high, stopping the algorithm after the required 
sources are estimated. Obviously, the prior knowledge will depend on the kind of 
signals that are involved in our application. 
 The idea is to model this prior on the power spectrum with a function that will 
constraint or modify the contrast function used to measure the independence of the 
sources. Considering the whitened signals , we must obtain the nx1 unit-norm 
vector  that recovers one of the interesting sources . 

( )tz

1w 1 1( ) ( )Ty t t= w z
 The deflation approach can be easily extended to recover other components 
searching for another vector  at every iteration that maximizes the contrast 
function and is orthogonal to the 

iw
, 1, ,k k i 1= −w …  vectors obtained for the previous 

extracted components. At each one source extraction stage, the proper prior must be 
considered if there exists. If this process is repeated up to the last component , 
then we have obtained the full demixing matrix W. 

( )ny t

 We will denote by the contrast function that measures the independence 
of the sources and that must be maximized. Any of the different contrast functions 
available in the literature is admissible. With respect to the prior, from a mathematical 
point of view, it could be modeled as a function to be maximized (minimized) or as an 
equality or inequality constraint. In the first case, because the minimization problem 
can be easily converted to a maximization one changing the sign, the contrast 

( )J w
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function will be modified including the prior, obtaining a new contrast 
function . The problem is stated as: 

( )J w

1 ( )J w
  (4) 1 1 1arg max ( ), 1TJ subject to=

w
w w w 1 =w

 In the second case, for priors that can be expressed as a set of M equality and 
inequality constraints, the Lagrangian and penalty functions are the most common 
ways of replacing the constrained optimization problem with an unconstrained one: 
 
 1 1 1arg max ( ), ( ) 0, 1 , ( ) 0, 1k mJ subject to H k K H m K M= = = ≥

w
w w w w… …= + (5) 

 Note that 1 1( ) 1 0, 1T
kH k K= − = ≤ ≤w w w . Remember that is orthonormal 

because of the independence of the sources and the sphering of the data during the 
PCA step, . It means that the condition 

1w

(0) (0)= =zR I Rs 1 1=w  is the same as a 
prior on the correlation function

1
(0) 1yR = . This restriction can be also carried out as 

a normalization step 1 1 /←w w w1 . 

3 A biomedical application: extraction of the atrial activity in 
atrial fibrillation recordings 

Atrial fibrillation AF is one of the most common cardiac arrhythmia, with a high 
morbity studied since some decades ago [7]. During AF episodes, the contractions of 
the ventricles are usually irregular and may average 100-150 per minute, decreasing 
the amount of pumped blood. If it happens, the body begins to compensate by 
retaining fluid, leading to the accumulation of fluid in the legs or lungs (edema). In 
addition, quivering of the atria in AF causes blood inside the atria to stagnate and to 
form blood clots producing embolism. 
 The recorded ECG can be considered as the superposition of the atrial activity 
AA (the interesting source), the higher power ventricular activity VA and other 
ancillary signals. BSS has been applied successfully to the AA extraction problem [8] 
thanks to the fulfillment of the independence assumption between AA and VA. The 
AA is identified after separation because the AA power is concentrated around a peak 
in the frequency range [4-10] Hz, depending on the patient. This spectral feature is 
particular of the AA, contrary to the other components with no peak in this band. 
However, this prior information has never been used by the other BSS algorithms 
proposed for the AA extraction [9], nor other non BSS solutions [10]. 
 The source separation solution including this prior requires its mathematical 
modeling. The restriction consists on the maximization of the integral of the power 
spectrum in the proper range of frequencies: 

 2

1

ˆ( , ) ( )
f

yf
J y φ= ∫w f df  (6) 

where ( )y fφ is the power spectrum of the recovered signal . It is maximum for 
the AA component ; the interval of integration 

( )y t
( )AAy t 1 2[ , ]f f depends on the prior 

information about the patient. We will assume that the range of frequencies is [4-10] 
Hz, i.e., there is no prior knowledge about the kind of neither AA nor the patient. 
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 As we can see, (6) corresponds to a case of equation (4) where the prior is 
modeled by a function that must be also maximized in addition to the contrast 
function used for the blind solution. Hence, a new contrast function is obtained 

. The AA source is: 1
ˆ( ) ( ) ( )J J J= ⋅w w w

  (7) ( ) ( )T
AA AAy t t= w z

 If we use the absolute value of the kurtosis [11] as the BSS contrast 
function ( ) ( )J kurt y=w ,  is calculated as: AAw

 ( )10

4
arg max ( ) ( ) 1T

AA y AA AAkurt y f df subject toφ= ⋅ ∫
w

w w =w  (8) 

 We use the periodogram as the method to estimate the spectrum. 

 
2 *1 1ˆ ( ) ( )j j T

y e Y e
N N

ω ωφ = = ω Tyy ωGG  (9) 

with N the data size, ( 1)[1, , , ]j j N Te eω ω −=ω …  and [ (0), (1), , ( 1)]Ty y y N= −yG … . 
 Obviously, the integral in (8) is calculated numerically and the frequencies 
normalized by the sampling frequency. Using (7) and (9), we can express (8) as: 

 { } { }( )
2

1

24 2 *1arg max ( ) 3 ( )
I

T T T T
AA i i

i I
E E
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w w z w z w Ζω ω Ζ wT

−

 (10) 

with , [I1T =w w 1,I2] the corresponding interval of digital frequencies and 
. Different optimization techniques can be used to solve 

(10). One of them is the FastICA algorithm constrained by the prior: 
[ (0), (1), , ( 1)]N=Ζ z z z…
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4 Results 

We applied the constrained FastICA algorithm (CFastICA) defined by equation (11) 
to five patients of AF. The experiments were carried out to many different 10 seconds 
intervals of the recordings. The first recovered source was always the AA, contrary to 
BSS algorithms non including the prior. In Fig. 1 we see that with the FastICA 
algorithm [11], it should have been necessary to extract eight components to including 
the interesting one, the AA. The advantages are clear: time of computation is reduced, 
the cost function is optimized, the postprocessing task to identify the AA is not 
necessary, the problem of propagating errors of deflation algorithms is eliminated and 
further AA analysis can be automatized for large databases because the permutation 
of the recovered components to allocate in the same position the AA is not required 
(in our multiple experiments with different recordings, the position in which AA is 
extracted ranges between the 5th and 8th place for any BSS non constrained algorithm 
for the case of 8 components). We show the sources #1 up to #4 recovered by 
CFastICA and the power spectrum of the sources #1 up to #3. 
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5  Conclusions 

We have presented a general deflation approach to include priors on the power 
spectrum or covariances of the sources. We have shown that this is equivalent to 
modify the BSS original contrast function or to constrain it, depending on the way we 
model it, that can vary for every application. We applied it to a biomedical problem, 
where a well established in the literature prior condition about the power spectrum of 
the interesting signal was included. This approach eliminates the indeterminacy of the 
permutation, exhausts the prior information about the sources usually not used by 
blind classical techniques and can be very useful in problems where the number of 
sources is very high and we are only interested in some few of them. 
 

 
Fig.1. Left, estimated sources by FastICA; AA is the last one. Right up, sources #1-4 estimated 

by CFastICA; AA is the first one. Right bottom, power spectrum of the sources #1-3.   
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