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Nicolás Garćıa-Pedrajas1 and Colin Fyfe2

1- Dept. of Computing and Numerical Analysis
University of Córdoba (SPAIN)
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Abstract. This paper presents a new method for constructing ensembles
of classifiers based on Immune Network Theory, one of the most interest-
ing paradigms within the field of Artificial Immune Systems. Ensembles
of classifiers are a very interesting alternative to single classifiers when
facing difficult problems. In general, ensembles are able to achieve better
performance in terms of learning and generalization error.

We construct an Immune Network that constitutes an ensemble of clas-
sifiers. Using a neural network as base classifier we have compared the
performance of this ensemble with five standard methods of ensemble
construction. This comparison is made using 35 real-world classification
problems from the UCI Machine Learning Repository. The results show a
general advantage of the proposed model over the standard methods.

1 Introduction

Classifiers ensembles[1] are receiving increasing attention in recent research in
the machine learning community, due to their interesting features. They are a
powerful tool especially when facing complex problems. For a detailed descrip-
tions of ensembles the reader is referred to [2].

In most cases, classifiers in an ensemble are designed independently or se-
quentially, so the advantages of interaction and cooperation among the individ-
ual classifiers are not exploited. In this paper we show how the interdependent
evolution of the classifiers that make up the ensemble by means of an Artificial
Immune Network is able to obtain very good performance.

2 Artificial Immune System

Artificial Immune System is a recent paradigm in the growing field of bioinspired
algorithms that mimics the immune system of animals. The immune system [3]
is a complex system that enables a mechanism by which certain dangers to the
organism can be identified. These dangers can be roughly classified as those
which arise from dysfunction within the organism’s own cells and those which
are due to the action of exogenous pathogens.

The adaptive immune system is believed to be continually creating antibodies
in a somewhat random fashion: it is rather as though it is exploring the space
of antigens always on the lookout for new dangers to the organism

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

437



Jerne’s immune network theory [4] is one of the most interesting fields within
both natural and artificial Immune Systems. This proposes that the various parts
of the immune system itself recognise other parts of the same system and indeed
affect the production or suppression of other parts of the system. A positive
reaction between components can lead to cell proliferation and activation while
a negative response can lead to cell tolerance and suppression.

3 Immune Network Ensemble

Many of the features of Immune Networks are very appropriate to the design of
committee machines, such as classifier ensembles. In the immune network the
immune cells must cooperate to defend the individual; in classifier ensembles the
different classifiers must develop different behaviors in order to collaborate to
solve the given problem. The model we present in this paper can be applied to
any committee machine regardless of the classifier used.

In order to develop an Immune Network to design a classifier ensemble, the
first step is the definition of the immune elements to use. We will have only two
immune elements: antibodies and antigens, as these are the basic elements of
any Immune Network. Each antibody is a classifier potentially usable to form
the ensemble.

The antigens represent the problem to be solved. However, the way the prob-
lem is represented by the antigens can be subject to many different approaches.
We have a set of training patterns and each antigen must represent a different
view of the classification problem. We have developed our model using three
different definitions for the antigen:

1. A bootstrapping sample from the training set, as in bagging [5].

2. One of the most interesting alternatives to ensemble construction using
resampling of patterns is the Random Subspace Method [6]. This method
was proposed for constructing a decision forest by randomly selecting sub-
spaces from the original dataset, and very good results were reported.
Random subspace method has been successfully applied to different prob-
lems [7].

This method can be straightforwardly adapted to our model. In this formu-
lation each antigen is a random subspace of the original space of variables.

3. Each antigen represents a random non-linear projection. A similar method
has been used in [8] for ensemble construction. This non-linear projection
is constructed using a random sample with replacement from the popula-
tion. The idea is to have different non-linear projections that favour the
classification of different subsets of patterns.

The affinity measure defines the relationship between antigens and antibod-
ies. In our model it must measure if the antibody is able to solve the problem
that the antigen represents. We have selected the most simple and straight-
forward measure: the affinity measure between an antibody, Abi, (a classifier),
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and an antigen, Agj , (a view of the training data), φ(Abi, Agk), is the number
of patterns that are correctly classified by the antibody with the view of the
dataset represented by the antigen.

Immune Systems rely on hypermutation as the only operator to obtain new
solutions. So, this operator must be able to create many different networks. We
will consider that hypermutation consists of performing both parametric and
structural mutation. Each of them will be performed with a certain probability.
Structural mutation consists of the addition or deletion of a connection or node.
Parametric mutation consists of the addition to every connection weight of a
small quantity normally distributed, r ∈ N(0, σ), where σ = 1 in our experi-
ments.

3.1 Stimulation value

In the framework of immune network theory each antibody is represented by a
paratope (π) that recognises other molecules, and an idiotope (ι) that is recog-
nised by other molecules. The idiotope is termed epitope (ǫ) within the frame-
work of the clonal selection theory. In order to obtain the idiotope of an antibody,
Abι, we set in turn every input to 1 and the rest of the inputs to 0, and get the
output of the antibody.

To measure to which extent one antibody recognises other antibody we com-
pute the Euclidean distance between their idiotopes, ‖Abι

i−Abι
j‖. The similarity

measure, τ(Abi, Abj), is given by:

τ(Abi, Abj) = 1 −
‖Abι

i − Abι
j‖

Dmax

, (1)

where Dmax is the maximum Euclidean distance between two idiotopes.
The key aspect of our model is the stimulation level achieved by each anti-

body within the immune network. This value must reflect the interaction of the
antibody with the antigen population and the rest of antibodies.

The stimulation value is composed by two terms. The first one, affi, measures
the affinity of the antibody to the population of antigens:

affi =
∑

∀k∈P (Ag):φ(Abi,Agk)>ǫ

φ(Abi, Agk), (2)

where φ(Abi, Agk) is the affinity value between antibody Abi and antigen Agk,
P (Ag) is the population of antigens, and ǫ is a recognition threshold (ǫ = 0.5 in
our experiments).

A second term, neti, measures the interaction between the antibody and the
rest of the antibodies of the population. This is based on two premises:

1. Each antibody only interacts with the antibodies that recognize the same
antigens.

2. The strength of the interaction is proportional to the level of self-recognition
of the antibodies.
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In this way an “immune subnetwork” is created by each antigen. The an-
tibodies that recognize the antigen above a certain threshold ǫ belong to the
subnetwork. Each antibody of the subnetwork interacts with the rest of the an-
tibodies of the subnetwork. The given function τ(Abi, Abj) measures the level of
self-recognition among two antibodies. From each immune subnetwork to which
the antibody belongs, the antibody receives a level of stimulation. The value of
this stimulation for the subnetwork of Agj antigen, net(Abi, Agj) is given by:

net(Abi, Agj) =
∑

k∈subnet(Agj)

τ(Abi, Abk)(φ(Abi, Agj) − φ(Abk, Agj)). (3)

The value of stimulation from the interaction is given by the addition of
stimulation within each subnetwork to which the antibody belongs:

neti =
∑

∀j:i∈subnet(Agj)

net(Abi, Agj). (4)

The underlying idea is that an antibody must recognize antigens that are not
recognized by other antibodies. Otherwise, its level of recognition must be high,
in order not to receive negative stimulation.

The stimulation value of antibody Abi, si, is given by si = affi + neti

4 Experiments

In order to test the performance of our model on solving classification tasks, we
need to compare it with other widely used ensemble methods. We have made
the experiments with five standard methods for creating ensembles of classifiers.
For testing the validity of the proposed model we have selected 35 datasets from
the UCI Machine Learning Repository.

We perform a single significance test for every pair of algorithms. This
test is a sign test on the win/draw/loss record of the two algorithms across
all datasets. Our base learner is a MLP neural network trained using a standard
back-propagation algorithm.

Table 1 shows the results in terms of test error for the five standard methods
and the three immune networks. Table 2 shows the comparison of the different
models as explained above. In the table the win/draw/loss (column against row)
record is labelled s. The row labelled p is the result of the two-tailed sign test
on the win-loss record.

The table also presents the mean of errors across all datasets and the geo-
metric mean error ratio of every pair of algorithms. The row labelled ṙ shows
the geometric mean of the error ratio column/row. A value below 1 indicates a
general advantage of the algorithm corresponding to the column to the algorithm
corresponding to the row.

The table shows that the best standard method based on resampling is Ad-

aBoost, although the difference is not significant for all the problems. Random
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Table 1: Summary of test errors for the standard and the immune methods.
Dataset Standard ensemble methods Immune Network

None Bagging Arc-x4 AdaBoost Sub-std Sampling Subspace NLP

Audio 0.2137 0.2060 0.1554 0.1304 0.2036 0.1500 0.1572 0.3214
Autos 0.2301 0.2111 0.2503 0.2307 0.1883 0.2118 0.2392 0.1373
Balance 0.1167 0.1165 0.0190 0.0611 0.0788 0.0128 0.0282 0.0641
Breast-c 0.2981 0.3023 0.2953 0.2859 0.2944 0.2902 0.2845 0.2817
Card 0.1293 0.1252 0.1364 0.1312 0.1308 0.1302 0.1302 0.1070
Derma 0.0355 0.0337 0.0370 0.0366 0.0456 0.0355 0.0289 0.0111
Ecoli 0.1202 0.1338 0.2222 0.2048 0.1417 0.1355 0.1309 0.0952
Gene 0.1108 0.1098 0.1006 0.1052 0.0849 0.0946 0.0905 0.1097
German 0.2493 0.2487 0.2537 0.2524 0.2476 0.2484 0.2560 0.2520
Glass 0.2862 0.2868 0.2862 0.2679 0.2717 0.2566 0.2528 0.2679
Glass-g2 0.1950 0.1983 0.1650 0.1858 0.1675 0.1600 0.1600 0.1000
Heart 0.1461 0.1333 0.1490 0.1348 0.1265 0.1176 0.1117 0.1265
Heart-c 0.1645 0.1346 0.1623 0.1566 0.1197 0.1079 0.1000 0.1053
Hepatitis 0.1193 0.1175 0.1447 0.1412 0.1290 0.1263 0.1158 0.1053
Horse 0.3007 0.2857 0.2828 0.2722 0.2758 0.2572 0.2857 0.2088
Hypo 0.0427 0.0422 0.0255 0.0258 0.0304 0.0290 0.0286 0.0467
Ionos 0.0747 0.0743 0.0816 0.0805 0.0874 0.0851 0.0936 0.1034
Labor 0.0714 0.0714 0.0714 0.0714 0.0785 0.0714 0.0714 0.0714
Liver 0.3089 0.3023 0.3267 0.3008 0.2756 0.2752 0.2954 0.2733
Lymph 0.1378 0.1477 0.1495 0.1441 0.1297 0.1351 0.1135 0.1351
Page-bk 0.0388 0.0389 0.0392 0.0469 0.0434 0.0471 0.0447 0.0556
Pima 0.2014 0.2043 0.2359 0.2000 0.2083 0.2008 0.2000 0.2083
Post-op 0.2864 0.2955 0.3682 0.3197 0.2818 0.2662 0.2727 0.2273
Primary 0.5385 0.5321 0.5242 0.5321 0.5155 0.5258 0.5286 0.6071
Promoters 0.2308 0.2308 0.2308 0.2308 0.1231 0.1692 0.1538 0.1154
Satimage 0.1399 0.1401 0.1187 0.1263 0.1280 0.1298 0.1286 0.1418
Segment 0.0798 0.0786 0.0546 0.0666 0.0581 0.0648 0.0548 0.0312
Sick 0.0390 0.0383 0.0299 0.0346 0.0401 0.0301 0.0305 0.0626
Sonar 0.1788 0.1766 0.1779 0.1788 0.1702 0.1519 0.1615 0.1923
Soybean 0.0692 0.0710 0.0671 0.0667 0.0988 0.0859 0.0706 0.1118
Vehicle 0.1995 0.1976 0.1940 0.1779 0.1630 0.1619 0.1640 0.1564
Vote 0.0574 0.0593 0.0614 0.0660 0.0685 0.0630 0.0667 0.0741
Vowel 0.5616 0.5622 0.4861 0.5307 0.4286 0.4649 0.4818 0.4481
Waveform 0.1178 0.1195 0.1238 0.1156 0.1088 0.1174 0.1139 0.1352
Yeast 0.3950 0.4022 0.5102 0.4046 0.4170 0.4102 0.4135 0.4151

Subspace shows the best performance among the standard methods, with a be-
haviour slightly better than AdaBoost. Regarding the immune ensembles, the
model based on wagging is able to improve the performance of the five stan-
dard models, with a difference that is statistically significant. Subspace based
antigens also obtain good results. They are able to improve the results of the
standard methods, with the exception of arcing and random subspace method.
Furthermore, the geometric mean-error ratio is below 0.93 for all the standard
methods.

The results of the antigens based on non-linear projections are very interest-
ing. On the one hand, for many problems the results are very good, improving
the performance of the standard methods very significantly. On the other hand,
the performance in some other problems is very poor. The source of this variance
of the results is not clear and we are performing further experiments investigating
how this kind of antigen behaves.

5 Conclusions

In this paper we have shown how Immune Networks can be used for evolving
ensembles of neural networks. The obtained ensembles have a very good perfor-
mance in terms of generalisation error. These ensembles outperform significantly
ensembles obtained with widely used standard methods. These results are rele-
vant as the benchmark used includes many different real-world problems.

These results are promising enough to justify further development of the
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Table 2: Comparison of the five standard methods and the three immune en-
sembles. Win/draw/loss record (row s) of the algorithms against each other and
p-value of the sign test (row p), and the geometric mean of the error ratio (row
ṙ).

Immune Network

Algorithm None Wagging Arc-x4 AdaBoost Sub-std Sample Subsp. NLP

ǭ 0.1867 0.1837 0.1868 0.1805 0.1703 0.1663 0.1674 0.1687

None s 19/2/14 18/3/14 22/3/10 25/0/10 28/1/6 27/0/8 21/0/14
p 0.4869 0.5966 0.0501 0.0167 0.0002 0.0019 0.3105
ṙ 0.9801 0.9346 0.9505 0.9247 0.8549 0.8598 0.8770

Wagging s 15/2/18 18/3/14 23/0/12 25/0/10 28/0/7 21/0/14
p 0.7283 0.5966 0.0895 0.0167 0.0005 0.3105
ṙ 0.9536 0.9697 0.9434 0.8722 0.8772 0.8948

Arc-x4 s 21/2/12 22/0/13 26/0/9 22/0/13 22/0/13
p 0.1628 0.1755 0.0060 0.1755 0.1755
ṙ 1.0169 0.9893 0.9147 0.9199 0.9383

AdaBoost s 20/0/15 25/0/10 25/0/10 19/0/16
p 0.4996 0.0167 0.0167 0.7359
ṙ 0.9729 0.8995 0.9046 0.9227

Sub-std s 24/0/11 22/0/13 19/1/15
p 0.0410 0.1755 0.6076
ṙ 0.9245 0.9298 0.9484

Sampling s 17/3/15 15/2/18
p 0.8601 0.7283
ṙ 1.0057 1.0258

Subspace s 15/1/19
p 0.6076
ṙ 1.0200

application, making use of many features of the natural immune network theory
that have not been considered in this initial model.

Our current research is focused on two different ideas. Firstly, we are work-
ing in a new definition of the stimulation function that takes into account the
diversity of the antibodies more explicitly. Secondly, in the present definition
the population of antigens is static, nevertheless, natural pathogens do mutate.
Using this feature we are developing a population of antigens subject to modifi-
cation as the population of antibodies develops.
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