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Abstract. Bioinformatics is a promising and innovative research field.
Despite of a high number of techniques specifically dedicated to bioinfor-
matics problems as well as many successful applications, we are in the
beginning of a process to massively integrate the aspects and experiences
in the different core subjects such as biology, medicine, computer science,
engineering, chemistry, physics, and mathematics. Within this rather wide
area we focus on neural networks and machine learning related approaches
in bioinformatics with particular emphasis on integrative research against
the background of the above mentioned scope.

1 Introduction

Completed three years ago, the human genome project (HGP) demonstrates the
high standards of technology, algorithms, and tools in bioinformatics for dedi-
cated purposes such as reliable and parallel genome sequencing, fast sequence
comparison and search in databases, automated gene identification, efficient
modelling and storage of heterogeneous data, etc. Thereby, machine learning
has played an indispensable role right from the beginning: gene identification
and related tasks are based on various adaptive machine learning tools such as
feed-forward networks or decision trees, one promising way to compute multi-
ple alignments is offered by hidden Markov models, dedicated support vector
machines constitute one of the most accurate approaches for detecting remote
homologies, to name just a few examples. The HGP, however, gave several sur-
prises such as the unexpected sparsity of coding regions of human DNA, pointing
out the importance of alternative splicing. These findings have led to new re-
search problems which accompany the not yet satisfactorily solved classical (and
mostly NP-hard) problems such as protein structure prediction, multiple align-
ment, or phylogenetic inference. For all these problems, machine learning offers
one promising approach to achieve efficient and reliable heuristic solutions.
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Since most proteins arise from post-translational processes, biological net-
works such as gene interaction networks or metabolic networks play an essen-
tial role in the understanding of cell processes. Techniques to infer biological
networks from biological data, e.g. gene expression data, as well as electronic
databases for biological networks become more and more available, such that
the integration of high level biological information into bioinformatics research
becomes possible. The continuous development of high quality biotechnology,
e.g. micro-array techniques and mass spectrometry, which provide complex pat-
terns for the direct characterization of cell processes, offers further promising
opportunities for advanced research in bioinformatics. This way, challenging
problems from clinical proteomics, drug design, or design of species can be tack-
led. However, in all these problems, a variety of different biological information
as detailed above plays a central role, and bioinformatics must cross the border
towards a massive integration of the aspects and experience in the different core
subjects and towards an integrated understanding of relevant processes in sys-
tems biology. This puts new challenges not only on appropriate data storage,
visualization, and retrieval of heterogeneous information, but also on machine
learning tools used in this context, which must adequately process and integrate
heterogeneous information into a global picture.

2 Clustering

Clustering a given data set can have different purposes: preprocessing of data
to simplify further analysis, identification of typical prototypes, arrangement of
data along a dendrogram, identification of closely connected regions of the data,
visualization, or data mining. In bioinformatics, several categories of clustering
methods are commonly used: iterative agglomerative hierarchical clustering pro-
vides a dendrogram of a given set of data points based on pairwise distances of
the data points. The concrete implementations differ in the way how distances
of clusters are computed. Popular methods include unweighted pairs grouping
using arithmetic means (UPGMA) or neighbor joining [1, 2, 3]. These methods
are used e.g. for phylogenetic inference or, more general, the arrangement of
taxa or conditions described by sequence information or more complex patterns
such as micro-array data into clusters. One problem of these methods is their
usually large sensitivity to noise and the choice of the metric. Prototype based
methods such as k-means, fuzzy-clustering, neural gas, or the self-organizing
map constitute an alternative in bioinformatics which yield a flat fuzzy or crisp
decomposition of the given data set into clusters [4, 5]. The prototypes represent
the usually a-priori fixed number of clusters by representatives, and the cluster
assignment takes place based on the similarity to the cluster prototype. This
offers very intuitive and robust results, however, depending on the method, the
number of clusters or the topology has to be fixed a priori. A variety of statistical
formulations provides another interface to very powerful, put often also compu-
tationally demanding clustering algorithms. Statistical models have the benefit
that hierarchies as well as flat parts can easily be integrated, and the model
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assumptions are clearly stated in mathematical terms (although it is usually not
guaranteed that the model assumptions meet reality). Popular models applied
in bioinformatics include, for example, mixture models, stochastic processes, or
latent space models [6, 7, 8, 9]. Model adaptation usually takes place by an op-
timization of the likelihood or some other analogous objectives. Closely related
to statistical models are models stemming from statistical physics [10] or infor-
mation theory [11] which also optimize cost terms for clustering. Finally, graph
clustering plays a role in bioinformatics especially for the analysis or compar-
ison of biological networks, e.g. to determine and compare functionally similar
proteins in a given network [12, 13, 14].

Applications of clustering methods in bioinformatics range from clustering of
DNA sequences and genes [2, 15], gene expression analysis on the base of micro-
array data [1, 10, 16, 5, 7, 8, 17, 18, 9], inference of gene interaction networks
based on these clusters [19, 20], visualization and mining of proteomics data [21],
up to biological networks analysis and the identification of functional groups in
protein association networks [12]. Thus, these techniques have an impact on
phylogenetics, genomics, proteomics, clinical research, up to the understanding
of cell processes and systems biology. The methods differ in their sensitivity
to noise, computational complexity, and possibility of online adaptation for new
data. Further, clusters might be fuzzy or crisp, the output might be hierarchic or
flat, and the input data of the methods ranges from Euclidean vectors, proximity
data, up to graph structures.

Often, clustering methods heavily depend on the choice of a metric for the
given data structures, and the design of appropriate and efficient similarity mea-
sures which, in particular, incorporate higher biological information constitutes
a topic of ongoing research. DNA sequences or proteins are often compared by
some form of pairwise or multiple alignment, whereby several methods which in-
corporate appropriate statistical information and which make the NP hard mul-
tiple alignment problem feasible have been proposed [22]. For protein sequences,
not only the primary structure but also the secondary or tertiary structure can
be included [23]. Recently, alignment methods have also been proposed for data
from mass spectrometry [24, 25] and metabolic pathways [26]. Micro-array data
can be processed by means of correlation measures which take the overall shape
of gene regulation patterns into account [2]. Thereby, also co-regulation of more
than one gene and mutual dependencies of clusters are of particular interest to
achieve meaningful results [27, 6, 28]. For more complex structures such as chem-
ical molecules or graphs, a variety of graph kernels which can serve as similarity
measure has been developed [29]. Finally, we would like to mention, that ker-
nels can also be defined taking already given cluster information into account, as
demonstrated e.g. in [30]. Based on an appropriate similarity measure, similarity
based clustering is easily possible. In addition, similarity measures constitute
the crucial part for database retrieval and similarity inference, which is quite
popular, e.g. to detect remote homologies with similar shape and function for
dedicated drug design [31].

Bioinformatics puts a number of challenges towards traditional clustering
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methods. Data are usually very high dimensional, e.g. long DNA strings, high
dimensional spectra, or micro-array data. Thus, the curse of dimensionality
must be avoided, e.g. by preprocessing with (nonlinear) principal component
analysis, latent semantic indexing, selection of features, or Fourier transform
[1, 21, 4, 32]. Gene expression data and clinical spectra can incorporate a time-
dependency which should be taken into account [1, 16, 9]. For an integrated
analysis, different data types and types of information, e.g. given by different
biological networks must be fused together to a single reliable and meaningful
image [33, 34, 15]. Further, additional information such as gene functions from
gene interaction networks or other constraints should be taken into account for
clustering [18, 7, 35]. Unsupervised clustering is generally prone to the ‘garbage-
in-garbage-out’ dilemma: a naive clustering algorithm applied to inappropriate
data representations will likely give some random result with only little infor-
mation. Thus, as much additional information as possible, in particular higher
biological information, should be integrated to shape the clustering algorithm
towards meaningful results. One problem consists in the fact, that different
types of data and different clustering algorithms can yield to rather dissimilar
results. Because of this fact, methods to judge the validity of the output are
indispensable. Proposals to achieve this goal range from the automated integra-
tion of cluster validity measures [36, 37, 17], bootstrap and consensus methods
for several runs [38, 2], up to a direct visual inspection of different outcomes, e.g.
multiple dendrograms or results from hierarchical and flat clustering [39, 40].

3 Classification

Unlike unsupervised learning, the objective of supervised classification models
is error minimization. Thus, a natural cost function, the number of misclassifi-
cations, exists. Nevertheless, several metric-based classification models do not
explicitly optimize this cost function, but they are based on intuitive heuristics.
Generally, machine learning tools become standard alternative approaches also
for classification in bioinformatics [41, 42, 43].

There exists a broad variety of models for classification ranging from tradi-
tional statistical approaches to artificial neural networks. In statistics linear and
quadratic discriminant analysis or regression models are standard tools with var-
ious problem specific extensions and modifications. Naturally, these approaches
play an important role in bioinformatics and are widely used [42]. Yet, the as-
sumptions on the data in terms of their applicability to a particular method
are often not fulfilled. In particular, in standard statistics usually normal dis-
tributions within data are assumed. Other statistical classification models base
on probabilistic approaches [44]. Thereby, Bayesian inference models as com-
plement to significance statistics claim an increasing impact [45] and were suc-
cessfully applied in splice site recognition, for example [46]. Yet, the underlying
assumptions about normal data distribution are frequently a substantial restric-
tion for application. This must be seen in the context of the frequently occurring
problems concerning the data in bioinformatics, which are sparseness, noise, un-
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balanced data (ethic problems to get data from healthy volunteers in medical
investigations), fuzziness, and missing values, which often make additional tech-
niques in machine learning necessary to account for these facts [32, 47]. Further,
the structure of data may be high-dimensional (curse of dimensionality) and
highly structured as in case of spectral (functional) data.

Traditionally, trees and tree classification schemes are of great interest in
medicine and biology. Thus, decision trees are the natural choice for many
bioinformatics classification problems like in taxonomy or phylogenetic depen-
dency representations. Further, they can be used in medical decision systems.
Induction of decision trees constitutes a standard symbolic machine learning tool
for classification of data [48]. A decision tree consists of a tree which interior
nodes are labelled by a dimension number and the connections to the node’s
children are labelled by real values which split the dimension into intervals. The
leaves contain class labels. Given a datum, a decision is based on consecutive
decisions provided by the interior nodes until the class information is reached at
the leaves. For a given training set, a decision tree can recursively be induced
by the choice of an interior node and an induced split of the training set until a
widely uniform classification is possible at the leaves. Thereby, an appropriate
measure such as the entropy guides the choice of the splitting dimension [49].
However, decision tree learners consider only one attribute at a time, such that
relevance distributed among several attributes cannot be detected. They provide
explicit rules and an ordering of the dimensions with respect to their importance
for the decision tree by means of their depth within the tree. Yet, decision trees
are sensitive with respect to disturbed data, which lead to instable solutions,
i.e. different resulting tree structures. One possible solution is to combine tree
generating systems with robust classification schemes like neural networks. One
approach based on prototype based classifiers are BB-trees which can be used
for decision system generation [50].

Artificial neural networks offer new possibilities for machine learning ap-
proaches in biomedical applications. The robust behaviour according to noisy
data, the high adaptability provides several of the above mentioned features
which are required in bioinformatics.

Again, applications exist for many areas in bioinformatics such as micro-array
analysis [51, 52], analysis of mass spectra and biomarker fishing in proteomics
[53, 41, 54]. An overview can be found in [55]. Besides the classic multiple-layer
perceptron (MLP), support vector machines (SVM) provide a powerful utility
for classification, which are able to handle complex data structures, nonlinear-
ities, and high-dimensionality [56, 51]. A principle alternative are prototype
based classifiers, the root of which is the family of learning vector quantization
(LVQ), introduced in [57]. In dependence on the class distribution representa-
tives are generated which act as characteristic prototypes for the several classes.
Prototype based methods have the advantage that the classification scheme is
easy to verify. Thus, the intuitive understanding of the decision scheme gives
hints for the classification process in contradiction to the black box decision of
an MLP-network, and prototypes often allow visualization of the classification
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behavior [58]. Several extensions exist, e.g. neighborhood cooperativeness for
stability and improved convergence [59], fuzzy classification schemes [54, 60].
In this context, also strategies for optimal data selection for learning (active
learning) can be applied [61].

Further, for all classification methods the underlying metric plays a cru-
cial role: the metric can be chosen in agreement with the classification task
or may be contradictious in the worst case. Therefore, adaptive, non-standard
metrics are required for optimum classification [62]. Whereas MLPs inherently
weight the data streams during learning, prototype based classifiers and SVMs
can be extended to deal with metric adaptation and non-standard metrics as
demonstrated in splice site recognition, mass spectroscopy or gene expression
analysis [63, 56, 64].

4 Visualization and mining

One of the most difficult and central topics in bioinformatics is how to best infer
systemic properties of cells and organisms from data, model them, and take them
into account in data analysis. It has been widely appreciated that most of the
earlier biological research has focused on studying only parts of the systems, and
understanding how the parts interact will be the next big challenge. The field
studying the integration of the parts, and more generally systemic properties of
cells and ultimately organisms, has been coined systems biology. Although the
name and its scope have received criticism, it is clear that modelling of systemic
properties is a key to understanding functioning of cellular systems.

On the cellular level, biological systems have so far been conceptualized in
terms of several interacting systems: gene regulatory networks, metabolic path-
ways, signaling networks, and more generally interaction networks of proteins.
Two recent advances in studying such networks are particularly important for
machine learning: (i) New so-called high-throughput measurement techniques
have been and are being developed to measure different aspects of the func-
tioning of cells. Gene expression micro-arrays that measure genome-wide gene
activity are perhaps the best-known examples, but for instance gene regulation
and protein-protein interactions can be measured on a massive scale as well. (ii)
The measurement data and insights derived from them are being collected into
databases, of which many are publicly available. Item number one above poses
interesting new challenges to modelling methods, and item number two makes
it practically feasible to apply machine learning [65, 66].

A lot is already known of the various interaction networks, but very little of
the knowledge is available in a quantitative form, ready to be incorporated into
statistical models. So far, the modelling problems are typically underconstrained
and even ill-defined, and usually modelling is interleaved with the use of data-
driven methods to “look at the data.” Particularly the noisy high-throughput
measurement data need careful exploratory analysis before they can be incorpo-
rated into quantitative models. Hence, the field needs machine learning both as
flexible statistical models and for visualization and data mining.
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The earliest studies of high-throughput gene expression data used clustering
to study hints of gene regulation [67]. Later, more sophisticated methods for
deriving regulatory interactions from data with, for instance, Bayesian networks
were developed [68]. It has recently turned out that the problem of deriving
interaction graphs from data is very hard, which of course makes it even more
intriguing to modelers. Moreover, the fact that inference of interaction networks
from data is not trivial, leaves room for other kinds of innovative machine learn-
ing methods. Again, inference from data and existing data bases needs to be
interleaved with data-driven exploratory methods. Visualization is particularly
useful in an interactive modelling process. One of the papers [69] in this session
introduces a new machine learning method for the general task of visualizing in-
teraction graphs, applicable and timely in systems-biological analyses of cellular
interaction networks.

5 High-performance computing

Many biomedical problems (e.g., micro-array gene expression data analysis, im-
age based pattern recognition, genetic and biochemical network analysis, protein-
protein interactions, phylogenetic reconstruction, genetic linkage analysis, pro-
tein structure prediction, etc.) require either computationally expensive numer-
ical operations, or operations on large-scale data sets, or, the presence of both
characteristics leads to even more computational challenges. It is often unsuit-
able or even impossible to solve these problems on conventional single processor
computers due to their enormous amount of computation time.

Despite of constantly rising clock rates and hardware design improvements,
the speed of single processor machines is limited by some fundamental physical
constraints of about three to five billion floating point operations per second.
Parallel computing overcomes this asymptotic behaviour by joining several pro-
cessors to compute the different parts of a complex problem independently and
quasi simultaneously. Following Amdahl’s law [70] the speed-up that can be
gained by parallelism generally depends on the granularity of – or better said
the potential to cleverly decompose – the problem at hand (see [71] for an illustra-
tion). Many bioinformatics applications possess exactly this feature. Examples
can be given for parallel clustering [72] and Bayesian inference [73], parallel se-
quence and string processing [74, 75], parallel image processing [76], and finally
even distributed data bases [77].

While these considerations define rather the requirements, the equipment
in modern bioinformatics labs assures the technical basis for high-performance
computing (HPC) with compute farms, computer clusters, and shared-memory
systems. These different types of computer hardware provide a more or less good
and suitable ground for bioinformatics applications of different fields along with
their different hardware demands.

Artificial neural networks offer a very high potential in terms of parallel
processing as well, due to their inherent parallelism [78, 79, 80]. Their de-
mands regarding the underlying computer hardware is variable, but tends to
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prefer closely and fast connected architectures. This comes from the relatively
tight connections between artificial neurons (nodes) within a network. Thus, a
clear preference is given to shared-memory computers or at least to very fast
(e.g. Myrinet) interconnected Beowulf clusters. This way, ANN based high-
performance computing paves the way for a number of biomedical applications
and investigations, which were not conceivable otherwise. Meanwhile a rather
large number of very successful applications have evolved in this wide field. For
a representative survey refer to [55].

Also some more or less recent trends, such as DNA computing [81], evolv-
able hardware [82, 83], or organic computing [84], made their way into this
field. Especially organic computing seems to be particularly interesting for
ANN based bioinformatics. Since many labs are equipped with computer clus-
ters and compute farms, and applications are usually not running exclusively on
the available computers, hardware adaptive implemented algorithms are partic-
ularly desired [85], most suitably those systems being able to adapt themselves
at run-time [86, 87].
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