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Abstract. Due to the various and dynamic nature of stimuli, decisions
of intelligent agents must rely on the coordination of complex cognitive
systems. This paper precisely focusses on a general learning architecture
for autonomous agents. It is based on a neural network model that enables
the specific behaviours of classical conditioning and a biologically inspired
attentional phenomenon called latent inhibition. We propose a neural
network implementation of an extended model of classical conditioning
and present some results.

1 Introduction

Our objective is to design a global learning architecture exploiting the connec-
tionist techniques such as artificial neural networks. It should integrate temporal
constraints and exhibit some sensorimotor learning capacities. Our main goal is
in fact twofold: first, we would like to validate a neurobiological hypothesis of
associative learning and latent inhibition. On the second hand, we are interested
in a cognitive learning model that can be implemented to command robots.
One of the most studied elementary cognitive processes to understand animal
behaviours is classical conditioning. These mechanisms are dependent on the
obtained rewards. A latent inhibition experiment is often performed to study
the neurobiological system involved in this learning process. Latent Inhibition
(LI) is the phenomenon of reduction in the conditioning capacity of a neutral
stimulus if it were initially presented alone several times without reinforcement
[1]. In other words, preexposure (PE) of the to-be-conditioned stimulus before
the conditioning phase induces some delay for the association learning. For ex-
ample, LI can easily be observed when an unexpected indigestion occurs after
a traditional meal. This natural phenomenon is considered to play an impor-
tant behavioural role because it allows exclusion of useless information from the
consciousness, avoiding the learning of irrelevant stimuli and thus improving the
action selection mechanism. Schmajuk et al.[2, 3] propose a dynamic system of
classical conditioning, which simulates certain behavioural effects of LI. Their
model (SLG) assumes that the association effectiveness of a conditioned stimu-
lus (CS) with an unconditioned one (US) is proportional to the novelty of the
CS. The strength of the internal representation of the CS decreases during pre-
exposure phase proportionnally to its novelty. We implemented our architecture
using the concept of the SLG model. While increasing the similarities with the
biological networks, our model also takes into account timing effects ; various
and numerous input stimuli can be used during an extended period of time and
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many situations of conditioning tests can be simulated compared to the SLG
model or other classical conditioning models [4, 5, 6]. It is indeed interesting to
test the global learning architecture within a larger behavioural framework in a
real environment. Thus, our architecture has been designed for the improvement
of the action-selection mechanism, for the processing of the stimuli and also for
the perception-reward-action learning.
The global learning architecture is presented in section 2.1 and some results are
presented and discussed in section 3.

2 Model

2.1 Main features

We propose a learning architecture that maintains an agent in a functional state
according to internal variables (needs or motivation) and to the external envi-
ronment stimuli. Our architecture is inspired by several computational models
[7, 8].

2.2 Architecture

Fig. 1: Global learning architecture. US : Unconditioned Stimulus, IC : Input
Classificator, TBG : Time Base Group, TB : Time Battery, ICR : Internal
Conditioned Response, BO : Behavioural Output

There are three distinct modules in our model (see Fig. 1), the first one for the
perception of stimuli, the second one for associative learning and the third for the
selection of behaviours. The first layer of the perception part can be considered
as the result of the basic preprocessing phase of the input stimuli. Indeed on this
level, inputs of our network contain all information concerning stimuli (intensity
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and reinforcing character for example). The perception module is in charge
of permanent and unsupervised learning with incremental memorization and
detection of novelty. An ART-1 neural network [9] has been chosen for the
implementation of this module. It is able to adapt to non familiar inputs by
creating new categories (plasticity). And it can also adapt the classes already
learned while degrading already memorized information (stability).
After this classification, each output neuron of the IC layer (Input Classificator)
is used as input to a single ”Time Battery” unit (TB) in the ”Time Base Group”
(TBG). A TB acts as delay neurons endowed with different time constants. Such
delay units have been proposed by several authors to obtain different timing
properties [10, 11, 12]. A TB performs a spectral decomposition of the signal.
An input to a specific battery implies both a reset of any previous activity in this
battery and an initialization of the spectral timing activity. The main interest
of this set of spectral neurons is to allow a compact and robust coding of time.
The first neuron of the battery has a very strong but short activity, which very
quickly reaches its maximum. The following neurons have decreasing activities
which reach their maximum later but last longer. There are ten cells per each
battery. The activation law of a given neuron j follows a Gaussian distribution
(Eq. 1).

Actj(t) =
1

mj
· exp− (t−mj)

2

2·σj (1)

t is the time in second, mj is the time constant for maximum intensity and σj

is the standard deviation.
Globally, TBG is the key element of the conditioning, the prediction and the
learning between perception, motivation and action. The output signal of a bat-
tery is represented by an integrator neuron. It can be interpreted as the Internal
Conditioned Response (ICR) corresponding to the specific input stimulus. That
response generates two different activities. Firstly, it is a conditioned reinforce-
ment signal for another stimulus, which is about to come later through another
TB. And in another side, it is the input signal of a neural network, which is
dedicated to the selection of action. This layer represents the behavioural part
of the system (BO : Behavioural Output). It determines the final behaviour of
the agent.

2.3 Learning and predictive system

Another important aspect of our architecture is that a reinforcement neuron has
been added. It positively acts on each output neuron of all TBs. It is activated
when a reward signal is received. The source of the reward can be external by
means of an unconditioned stimulus, internal in the case of a motivation signal
or if an already conditioned reinforcement is provided by ICR neurons. When
the reinforcement neuron is activated, the weights of the connection between the
conditioned response neuron (ICR) and the most active TB neuron at that time
are updated according to Eq.2:

Wt = Wt−1 + � (2)
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with �, the weight variation (Gaussian distribution):

� = k · exp−α·(Wt−1−μ)2 −ρ (3)

with

{
ρ = +0.01, for Wt > 0;
ρ = −0.01, otherwise.

α and μ are scale and location parameters, respectively. ρ is a leak.
The other weights of the TB are decreased according to Eq.4. On the other

hand, if a stimulus is not activated when there is a reset of activity of the
corresponding TB, all weights are decreased according to Eq.4 :

Wt = Wt−1 −� (4)

Furthermore, we propose additional mechanisms to take into account the features
of LI and other important properties of classical conditioning.

• extinction : synaptic weights progressively return to their basal state if
they are not reactivated.

• conditioned reinforcement : a sufficient answer can be used as a reinforce-
ment signal for another stimulus. Thus, it is possible to learn a sequence
of stimuli.

• selection of action : coactivation of one unconditioned response and one
conditioned response involves a modification of the weights into the BO
network. This sensorimotor coupling allows the learning of the adequate
behaviour when the conditioned stimulus is presented alone.

3 Results and discussion

Our network has been tested in multiple cases of conditioning tests. For example,
a first neutral stimulus (CS) is presented in input layer. Then there is activation
of the neurons of the corresponding TB. After a delay, a second stimulus (re-
inforcing = US) is presented. We repeat the same sequence several times. The
test phase consists in presenting the CS alone and observing the response of the
corresponding ICR neuron. Figure 2 shows the internal conditioned responses
obtained after twenty associations between CS and US.
The second simulation is a classical conditioning test with the latent inhibition
phenomenon. A first stimulus is presented alone several times with random de-
lays. The same sequence operated in the first simulation is then performed and
the test of conditioning finally occurs. Figure 3 shows the results of the same
experiment except that CS-US associations are preceded by preexposure of ten
CS. As can be observed, the internal conditioned responses are delayed. The
effect of latent inhibition is appropriately noted after successive presentation of
the CS alone. The repeated presentation of the CS alone induces a progressive
decrease of the response until the loss of conditioning. The sequence CS-delay-
US produces an increase of the weight of the TB neuron corresponding to the
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Fig. 2: Classical conditioning test : Conditioned response after 20 CS-US asso-
ciations with different CS-US delays (200, 600, 1800 and 5000 ms)

Fig. 3: Latent Inhibition : Conditioned response after 20 CS-US associations
preceded by 10 CS with different CS-US delays (200, 600, 1800 and 5000 ms)

delay. Thus, gradually, the resulting activity becomes sufficient to release a re-
sponse in the conditioned response neuron. Our results are in adequacy with the
behavioural responses obtained with animals [13]. In fact, we observed several
characteristics of classical conditioning and latent inhibition in many behavioural
experiments.

• The larger the delay between the CS and the US, the longer it takes to
obtain a conditioning and the weaker the internal conditioned response.
This is due to the characteristics of TB neurons. An important delay
between the CS and the US involves a modification of the weight of the
TB neuron with a long but weak activity.

• During the test phase, we obtain a response of the conditioned response
neuron exactly when the theoretical presentation of the US is expected.

• Many other experiments have been carried out with our model with various
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delays, reinforcements, stimuli and experimental situations (blocking test,
CS-CS or CS-US associations, context tests. . . ).

4 Conclusions and perspectives

From behavioural experiments on animals and also thanks to various existing
models we defined an artificial neural network architecture allowing the classical
conditioning, the learning of the delay and the sequence of stimuli. Our model
embeds certain interesting features. Firstly, it is a real time model that adap-
tively builds the relationships between stimuli and reinforcements. Furthermore,
it enables the effect of latent inhibition, which is an important characteristic in
the conditioning and action selection processes. Moreover, it provides a suitable
framework for the learning of specific and appropriate behaviours in complex
environnements. Thanks to the first encouraging results, we will soon realize
experiments using a mobile robotics simulation software. Indeed, our model will
be implemented on Webots (c) software [14]. Then, we will be able to study the
behaviours of an autonomous robot using our conditioning learning model and
a dedicated action module.
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