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Abstract

We consider two stochastic process methods for performing canonical
correlation analysis (CCA). The first uses a Gaussian Process formulation
of regression in which we use the current projection of one data set as
the target for the other and then repeat in the opposite direction. The
second uses a Dirichlet process of Gaussian models where the Gaussian
models are determined by Probabilistic CCA [1]. The latter method is
more computationally intensive but has the advantages of non-parametric
approaches.

1 Introduction

A stochastic process Y (x) is a collection of random variables indexed by x ∈ X
such that values at any finite subset of X form a consistent distribution. A
Gaussian Process (GP) therefore is a stochastic process on a function space
which is totally specified by its mean and covariance function [7, 6, 4]. A
Dirichlet Process (DP) is a stochastic process defined on a space of measures:
it can be thought of as an extension to Dirichlet Mixture Models in which the
number of models in the mixture tends to ∞.

In this paper, we investigate the use of both types of processes to perform
Canonical Correlation Analysis (CCA). Canonical Correlation Analysis is used
when we have two data sets which we believe have some underlying correlation.
Consider two sets of input data, x1 ∈ X1 and x2 ∈ X2. Then in classical
CCA, we attempt to find the linear combination of the variables which gives
us maximum correlation between the combinations. Let y1 = wT

1 x1 and y2 =
wT

2 x2. Then, for the first canonical correlaton, we find those values of w1 and
w2 which maximises E(y1y2) under the constraint that E(y2

1) = E(y2
2) = 1.
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2 Gaussian Processes

Consider a stochastic process which defines a distribution, P (f), over functions,
f , where f maps some input space, χ to <. If e.g. χ = <, f is infinite dimen-
sional but the x values index the function, f(x), at a countable number of points
and so we use the data at these points to determine P (f) in function space. If
P (f) is multivariate Gaussian for every finite subset of X, the process is a GP
and is then determined by a mean function θ(x) and covariance function Σ(x).
These are often defined by hyperparameters, expressing our prior beliefs on the
nature of θ and Σ, whose values are learned from the data.

A commonly used covariance function is Σ : Σij = σ2
y exp(− (xi−xj)

2

2l2 )+σ2
nδij

which enforces smoothing via the l parameter. The σy parameter determines
the magnitude of the covariances and σn enables the model to explain the data,
y = f(x) + n, with n ∼ N(0, σ2

n).

2.1 GP for Canonical Correlation Analysis

We use a GP to perform CCA in the following manner. Let the input data be
x1 and x2. Then we define two sets of parameters for the Gaussian Process:
let θi(xi), i = 1, 2, define the mean function of the estimate for CCA and let
Σi, i = 1, 2, be the corresponding covariance function. For example, in our
first, expository example, we let x1 and x2 have a linear relationship so that
θi(xi) = bixi + ci, i = 1, 2, with bi, ci being the parameters of the process, and
Σi

kj = σ2
i,y exp(−‖x1,k−x1,j‖2+‖x2,k−x2,j‖2

2l2i
)+σ2

i,nIN , k, j = 1, ..., N, i = 1, 2 where

N is the number of samples, x1,j (resp. x2,j) is the jth sample from the first
(resp. second) data stream and li determines the degree of interaction between
the samples. Note that we have continued to index the data stream by i so that
Σ1 6= Σ2 since l1, σ1,y, σ1,n may evolve differently from l2, σ2,y, σ2,n.

Then we wish to maximise the covariance in function space of (θ1(x1) −
µ1)(θ2(x2)−µ2) under the constraint that E(θ1(x1)−µ1)2 = E(θ2(x2)−µ2)2 =
1. Let γi be a generic parameter of the covariance matrix, Σi. Then we use
the standard method of gradient descent on the log likelihood with θ2(.) as the
target for training θ1(.),

∂L

∂b1
= (θ2(x2)− θ1(x1))(Σ1)−1x1;

∂l

∂c1
= (θ2(x2)− θ1(x1))(Σ1)−1 (1)

∂L

∂γ1
= −0.5trace((Σ1)−1 ∂Σ1

∂γ1
)

+ 0.5(θ2(x2)− θ1(x1))T (Σ1)−1 ∂Σ1

∂γ1
(Σ1)−1(θ2(x2)− θ1(x1)) (2)

where
∂Σ1

∂l1
= 2Σ1

T 1

2l21
;

∂Σ1

∂σ1,y
= 2σ1,y exp(−T 1

2l21
);

∂Σ1

∂σ1,n
= 2σ1,nIN (3)

where T 1
kj = ‖x1,k−x1,j‖2+‖x2,k−x2,j‖2

2l21
. Thus we are using the current estimates
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given by θ2(x2) as targets for the training of the mean and covariance functions
for the estimated functions on x1. We alternate this training with the equivalent
rules for for the estimated functions on x2 when θ1(x1) becomes the target. We
can view the covariance matrix as the local product of the covariance matrices
of Xi, thus creating a covariance matrix[4] for the product space X1 ×X2. An
alternative would be to use the sum of the individual covariances.

We must also heed the constraint that E(θ1(x1)−µ1)2 = E(θ2(x2)−µ2)2 = 1
during training and so we scale the parameters of θi() after each update to satisfy
this constaint.

We create two sets 100 samples of 4 dimensional data in which all values are
randomly taken from a N(0, 1) distribution except that the first element of each
of the two sets of samples is taken from 0.5 ∗ (t + µj) + ci, i = 1, 2j = 1, ..., 100,
where t is sampled from N(0, 1), and is common to both data streams and µj

is independently drawn from N(0, 1).
Figure 1 shows the convergence of the bi parameters to the correct direc-

tion in terms of the cosine between the 4-dimensional vectors and the correct
direction. We see quick and reasonably accurate convergence with stability at
the converged values. Best results are achieve by annealing the learning rate
from 0.01 to 0 during the course of the simulation. There are, however, some
problems with this model:

• For this simulation, the true c1 = 3, c2 = 0, however the estimated val-
ues are c1 = 1.48, c2 = −1.49. We would like some way to ground the
simulation in the truth.

• The model is over-confident: the σy are too high and the σn too small.

• This GP is a parametric approach: it defines the relationship as linear
a priori. We would prefer to use a non-parametric approach e.g. with
p(W ) = N(0, σ2I), and allow the covariance matrix to determine the
nature of the relationship but we then have no target with which we de-
termine the values of hyperparameters.

3 Probabilistic CCA

[1] create a model of CCA based on underlying latent variables. Let

y ∼ N(0, Id)
Then x1|y ∼ N(W1y, Ξ1), W1 ∈ Rm1×d, Ξ1 º 0

x2|y ∼ N(W2y, Ξ2), W2 ∈ Rm2×d, Ξ2 º 0

where we have assumed zero mean data.
Then the maximum likelihood parameters for the model are given by

Ŵ1 = Σ11U1dM1 , Ŵ2 = Σ22U2dM2

Ξ̂1 = Σ11 − Ŵ1Ŵ1
T

, Ξ̂2 = Σ22 − Ŵ2Ŵ2
T
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Figure 1: Convergence of bi, i = 1, 2 to the correct direction.

where Σii is the covariance matrix of xi, Uid is the first d canonical correlation
filters, and M1,M2 ∈ Rd×d are such that M1M

T
2 gives the diagonal matrix of

canonical correlations.

Let W =
(

W1

W2

)
and Ξ =

(
Ξ1 0
0 Ξ2

)
. Let Σ denote the sample covari-

ance matrix. [1] derive an EM algorithm for finding these parameters,

Wt+1 = ΣΞ−1
t WtMt(Mt + MtW

T
t Ξ−1

t ΣΞ−1
t WtMt)−1 (4)

Ξt+1 =
(

(Σ− ΣΞ−1
t WtMtW

T
t+1)11 0

0 (Σ− ΣΞ−1
t WtMtW

T
t+1)22

)
(5)

where Mt = (I + WT
t Ξ−1

t Wt)−1.
It is our empirical finding that the above model works well when the data

is indeed drawn from that model but that any deviations from this (especially
non-Gaussianity), result in incorrect convergence i.e. the model converges to
solutions which do not represent anything close to a CCA. Thus we search for
a loosening of these constraints.

4 Dirichlet Processes

We will consider symmetric Dirichlet distributions on a space of measures i.e.
a sample from this distribution will be a probability density function on the
data space. More formally, let the data space, X ⊂ RD be partitioned into K
disjoint sets, X1, X2, ..., XK such that X = ∪Xi and let Θ = {θ1, θ2, ..., θK} be
a probability measure on the data space, so that P (x ∈ Xi) = θi. Then the
Dirichlet distribution is given by

P (Θ|α, Θ0) =
Γ(α)∏K

i=1 Γ(αθ0,i)

K∏

i=1

θ
αθ0,i−1
i (6)

where Θ0 is the base measure and θ0,i is the base measure on Xi; these can
be thought of as the centres of the process since E(Θ(Xi)) = θ0,i. α is a posi-
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tive scalar which determines the width of the distribution since Var(Θ(Xi)) =
θ0,i(1−θ0,i)

α+1 .
One way [5] to describe the DP is as an extension of the Dirichlet Mixture

model as the number of mixtures, K tends to ∞.

G ∼ DP (.|G0, α), θi ∼ G(.), xi ∼ p(.|θi) (7)

An alternative description is as the Chinese Restaurant process [2] which em-
phasises the conjugacy of the DP, analogous to the Dirichlet distribution’s con-
jugacy to the multinomial distribution. Let us have N observations which are
multinomially distributed according to Θ. Then

P (Θ|α, Θ0,x1, ...,xN ) =
P (x1, ...,xN )|α, Θ0,Θ)P (Θ|α, Θ0)

P (x1, ...,xN )

= C
K∏

i=1

θni
i ×

K∏

i=1

θ
αθ0,i−1
i = C

K∏

i=1

θ
αθ0,i+ni−1
i

which is also a Dirichlet process. In the above, ni is a count of the number
of times a sample belonged to the ith set, Xi and so

∑K
i=1 ni = N . We can

view this as a means of recursively updating our estimates of Θ0 by noting
that the new distribution is a Dirichlet distribution with αnew = α + N and
Θnew

0 = αΘ0+NF̂
α+N where F̂ is the empirical distribution i.e. the ni.

4.1 DP for Canonical Correlation Analysis

We create a DP Mixture of Gaussians in which the parameters of the Gaussians
are derived from local Probabilistic CCA while the localness of this operation
is as a result of responsiblities found by the DP. Each of the local CCA models
returns a local estimate of W and Ξ using the responsibilities. i.e. Σ in (5)
becomes

Σk =
1
N

N∑

i=1

(xi − µ)T Rki(xi − µ) (8)

where

Rki =
{

1 if k = arg maxj P (xi|j)P (j|j−)
0 otherwise (9)

with P (j|j−) =
n−j

N−1+α where n−j is a count of the number of other samples
(excluding the ith one) allocated to mixture j, a form of Gibbs sampling. With
probability α

α+N a new mixture is created and K = K + 1. However as more
populous classes are more liable to be joined the number of local models is kept
low (controlled by the α parameter). We graph in the left diagram of Figure 2
the first element in each of two 4 dimensional data streams which have no other
correlations. The right diagrams show the first PCCA directions found by this
method.

We see that the DP is also able to capture local linear correlations but
approximate the nonlinear relationship between the two sets as a mixture of local
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Figure 2: The left diagram maps the first element of x1 against the first element
of x2 in 1000 samples. The right diagram shows results of 6 iterations with the
DP method: we have found 8 local mixtures when α=5 and show the linear
correlations found in the same space as the left figure.

probabilistic CCA models. This method is as accurate as the GP method but
has the advantages of mixture modelling. Alternative approaches to nonlinear
CCA [3] will be investigated in future to determine if non-parametric Gaussian
Processes can define such relationships.
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