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Abstract. Usually time series prediction is done with regularly sampled
data. In practice, however, the data available may be irregularly sampled.
In this case the conventional prediction methods cannot be used. One
solution is to use Functional Data Analysis (FDA). In FDA an interpo-
lating function is fitted to the data and the fitting coefficients are being
analyzed instead of the original data points. In this paper, we propose a
functional approach to time series prediction. Radial Basis Function Net-
work (RBFN) is used for the interpolation. The interpolation parameters
are optimized with a k-Nearest Neighbors (k-NN) model. Least Squares
Support Vector Machine (LS-SVM) is used for the prediction.

1 Introduction

Time series prediction [1] is an important part of decision making in many appli-
cation domains such as climatology and electricity network management. Usu-
ally linear models or neural network based methods are used for this task. Past
values are used as inputs to the model and the output provides an estimate for
the next value. These methods, however, have a serious limitation: the time
series must be regularly sampled. In some application fields, such as medical
time series, irregular sampling is frequent. Moreover, missing data are common
in many real world application and correspond to a particular case of irregular
sampling. In those cases conventional methods cannot be used.

One solution is to regenerate constantly sampled data by resampling the
original data. This approach, however, is fairly noisy and thus not recommended.
A better idea is to use Functional Data Analysis (FDA) [2]. In FDA the problem
is casted into some function space where it can be analyzed more efficiently. This
approach is based on the assumption that the data points are samples of some
continuous function. The unknown function is estimated using some regression
technique and the estimate is used as an input to the model. Neural networks
that process functional data are called functional networks. They have been
successfully applied to various data analysis tasks (see for example [6]).

In this paper, we introduce a functional time series prediction method in-
spired by functional auto-regressive model [3]. First a Radial Basis Function
Network regressor is fitted to the data in time space. The fitting coefficients (i.e.
weights of the RBF) are used as training examples for a Least Squares Support
Vector Machine (LS-SVM) [4] prediction model.
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The concept of functional networks is discussed in Section 2. In Section 3 the
LS-SVM is presented briefly and in Section 4 the prediction method is outlined.
An application to real world data is presented in Section 5.

2 Functional Networks

Functional networks stand for neural networks that process functional data in-
stead of R

n data, using principals from Functional Data Analysis [2] For more
detailed information about functional networks see for instance [6] and [8]. In
literature functional data has been successfully applied to some neural networks
models, mainly Radial Basis Function Networks (RBFN) and Multilayer Per-
ceptrons (MLP) [6].

FDA can be considered as an extension to traditional data analysis. Mul-
tivariate analysis consists mainly of just vector operations, including norm and
inner product. However, these operations are available on any Hilbert space and
thus also on some function spaces such as L2. Therefore much of the developed
data analysis theory can be applied directly on functional data.

In practice functional data are never directly available: each function is
known via a set of (input, output) pairs, possibly corrupted by noise. The
first step is to try to estimate these underlying functions by projecting the data
on some functional basis. Since function spaces in general are infinite dimen-
sional, the basis must be truncated (as in the case of Fourier transform) or some
approximation must be applied (as in the case of b-splines).

Let us assume that we have N observations and each observation consists of
mi pairs of measurements (xi

j , y
i
j)

mi
j=1, where xi

j ∈ R
p, yi

j ∈ R and i = 1, . . . , N .
Basic assumption of FDA is that there is a regular function fi ∈ L2 such that
yi

j = fi(xi
j) + si

j , where si
j stands for the observation noise. Knowing the trun-

cated basis ϕi of the finite-dimensional function space A we can approximate fi

by minimizing the training error,

min J(wi) =
mi∑
j=1

(
yi

j − f̂i(xi
j)

)2

with f̂i(x) =
q∑

l=1

wi,lϕl(x),

where wi,l are the fitting coefficients and q is the dimension of A.
The function f̂i is uniquely defined by the numerical regression coefficients

wi = [wi,1, wi,2, . . . , wi,q]T . Since the basis functions are not usually orthonormal
(think to B-splines for instance) we transform the coefficients according to

ωi = Uwi

where U is the Choleski decomposition Φ = UT U of the matrix Φi,j = 〈ϕi, ϕj〉.
Euclidean operations (e.g., scalar product) on the transformed coefficients are
equivalent to the corresponding operations in the functional space [6] (e.g. func-
tional inner product): once the function estimates ωi have been obtained any
conventional neural network model can be used for analysis.
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3 LS-SVM for regression

LS-SVM is a least squares modification to the Support Vector Machine (SVM)
[4]. The major advantage of LS-SVM is that it is computationally very cheap
while it still possesses some important properties of the SVM. In this section we
will briefly discuss the LS-SVM method for a regression task. For more detailed
information see [4].

Again assume that we have a set of examples (xi, yi)N
i=1 and the goal is to

estimate a function f as mentioned in the previous section. Basically we define
a N dimensional function space by defining the mappings ϕ = [ϕ1, ϕ2, . . . , ϕN ]T

according to the measured points.
The LS-SVM model is of the form f̂(x) = wT ϕ(x) + b where w is a weight

vector and b is a bias term. The optimization problem is the following,

min J(w, ε) =
1
2
wT w + γ

1
2

N∑
i=1

ε2i

so that yi = wT ϕ(xi) + b + εi, i = 1, . . . , N

where the fitting error is denoted by εi. Hyper-parameter γ controls the trade-off
between the smoothness of the function and the accuracy of the fitting. This
optimization problem leads to a solution,

f̂(x) =
N∑

i=1

αiK(x,xi) + b

where αi are the coefficients and K(x,xi) = ϕT (x)ϕ(xi) is the kernel. A com-
mon choice for the kernel is the Gaussian RBF,

K(x,xi) = e−
‖x − xi‖2

2σ2
.

4 Time Series Prediction with Functional Network

4.1 Methodology

Consider a time series {ti, yi}N
i=1 where the time stamps ti belong to a closed in-

terval [a, b]. First the data is divided into input windows Ih and output windows
Oh, with h = 1, . . . , �(b − a − 2L)/δ� + 1:

Ih = {(ti, yi) | a + (h − 1)δ ≤ ti < a + (h − 1)δ + L},
Oh = {(ti, yi) | a + (h − 1)δ + L ≤ ti < a + (h − 1)δ + 2L}.

All windows have the same length L on the time axis. The shift between two
sequential windows is δ. In the case of regularly sampled data the sampling
interval is a natural choice for δ.

A outline if the prediction schema is shown in Figure 1. On each window,
the time series is considered as a function and is modelled by a RBF network
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Fig. 1: Prediction method. First a RBF regressor is fitted to the data points.
The prediction in done in the function space using LS-SVM. Thus the output is
also a set of coefficients.

with Gaussian kernels. The centers of the kernels are equally distributed on an
interval 10 per cent wider than the window. This ensures that the function f̂
can be monotonically increasing at the borders of the window. In other words
the model is

f̃(t) =
q∑

i=1

wiK(t, ti),

where ti are the fixed centers and q is the number of kernels. Furthermore a
regularization term wT w is used in the fitting to prevent overfitting [5].

The fitting coefficients are transformed using the Choleski decomposition as
mentioned in Section 2. The obtained sets of input and output coefficients are
denoted as Ih = ω(Ih) and Oh = ω(Oh) respectively.

Finally a prediction mapping P : Ih 	→ Oh in the function space is trained
with LS-SVM. The kernel is also a Gaussian RBF. Since the dimension of the
output is q, we are actually training q separate LS-SVM regressors for each
dimension. The performance of the prediction is evaluated in a separate valida-
tion set. The mean square error at the known data locations is used as an error
measure.

4.2 Optimizing parameters

There are basically four unknown parameters involved in the window function
fitting: the window length L, number of kernels q, width of the kernels σ and
the regularization parameter γ.

These parameters are optimized with a grid search. A predefined set of values
is tested for each parameter. The parameter combination with the smallest Leave
One Out (LOO) error is selected. Because we are exploring a four dimensional
grid it is essential to speed up the testing process. For this purpose the fitting
parameters are optimized using a k-NN approximator [7] [5] instead of LS-SVM.
Since k-NN is computationally a very cheap method one is able to perform an
larger search that would be feasible with LS-SVM. Of course the drawback is
that the obtained parameters may not be optimal for the LS-SVM model.

Once the best fitting parameters are found a LS-SVM model is trained. The
LS-SVM introduces two more unknown parameters γ̃ and σ̃. These parameters
are also optimized with a grid search using LOO error.
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5 Time Series prediction Application

5.1 Darwin dataset

The proposed prediction schema was tested with the Darwin dataset. It contains
monthly values of sea level air pressures measured between years 1882 and 1998.
An example of the data is shown in Figure 2 a). The first 1300 values of total
1400 were used for training and the remaining 100 values were used for validation.

Darwin dataset is constantly sampled. To experiment with missing data we
randomly removed 33 per cent of the data points in the training set. In this
experiment the mean square error was evaluated only in the first available data
point.
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Fig. 2: a) Darwin dataset. b) Example of prediction.

5.2 Results

We performed several grid searches with k-NN model to tune the four fitting
parameters. Figure 2 b) shows and example of the prediction with the best
model (See Table 1). On the left there are the input data points and the input
function while the correct output function and corresponding data points are
on the right. The predicted output is marked with a solid line. A LS-SVM
model was trained using these parameters. For reference the k-NN prediction
was tested also without any data loss. The results are shown in Table 2.

L q σ γ k
27.1 8 1.70 348 25

Table 1: The best parameter setup for k-NN prediction with 33 % dataloss.

First of all it should be noted that the k-NN performance is very good when
no data has been removed. Only the best conventional methods can reach better
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k-NN LS-SVM
0 % dataloss 33 % dataloss 33 % dataloss

LOO error 0.83 1.19 1.15
Test error 0.96 1.49 1.39

Table 2: Results of the Darwin dataset. This table contains mean square pre-
diction errors on the learning set (LOO) as well as on the test set. k-NN was
experimented with both 0 per cent and 33 per cent dataloss. Using the best
setup of the latter case a LS-SVM model was trained.

mean square error. Naturally the error increases when one third of data is
removed, but not so much as one would intuitively expect. Furthermore it can
be seen that the LS-SVM model performs clearly better than k-NN.

6 Conclusions

We have proposed a functional LS-SVM time series prediction method to deal
with the problem of irregular sampling or missing data. The method was ex-
perimented with the Darwin dataset. The results obtained with no data loss
show that the functional approach is entirely comparable to the conventional
methods. Furthermore the prediction performs reasonably well even if one third
of the data points are missing.

In future, more tests should be done with irregularly sampled data.
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