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Abstract. We review two versions of a topology preserving algorithm
one of which we had previously [1] found to be more successful in defining
smooth manifolds and tight clusters. In the context of outlier detection,
however, the other is shown to be more successful. Nevertheless, we show
that, by using local kernels for calculation of responsibilities, the first one
can also be used in this manner.
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1 Introduction

Topographic mappings have proved to be a very useful tool when dealing with
high-dimensional data. The non-linear projection of the data into a two dimen-
sional latent space gives first of all a way to visualise the data, and secondly
allows us to find clusters in this low-dimensional space. In this paper, we inves-
tigate the effect of outliers on the mapping and show how a mapping which had
previously been shown to be successful at identifying smooth manifolds, can also
identify outliers by using local kernels to calculate responsibilities.

2 Harmonic K-Means

Harmonic Means or Harmonic Averages are defined for spaces of derivatives.
For example, if you travel 1

2 of a journey at 10 km/hour and the other 1
2 at 20

km/hour, your total time taken is d
10 + d

20 and so the average speed is 2d
d
10+ d

20
=

2
1
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20
. In general, the Harmonic Average of K centre points, a1, ..., aK , is

defined as
HA({ai, i = 1, · · · , K}) =

K∑K
k=1

1
ak

(1)

Harmonic Means were applied to the K-Means algorithm in [2] to make the
K-means a more robust algorithm. The Harmonic average performance function
and the recursive formula to update the centres are
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where di,k is the Euclidean distance between the ith data point and the kth

centre.
[2] have extensive simulations showing that this algorithm converges to a

better solution (less prone to finding a local minimum because of poor initiali-
sation) than both standard K-means or a mixture of experts trained using the
EM algorithm.

3 The Harmonic Topograpic Map

The Harmonic Topographic Map (HaToM) was developed as a clustering alter-
native to the Topographic Product of Experts (ToPoE) [3], which is also inspired
by the Generative Topographic Map(GTM). The HaToM has the same struc-
ture as the GTM, with K latent points that are mapped to a feature space by M
Gaussian basis functions, and then into the data space by a matrix of weights W.
Each latent point, indexed by k is mapped, through a set of M basis functions,
Φ1(tk), Φ2(tk), · · · , ΦM (tk) to a centre in data space, mk = Φ(tk)W . But the
similarity ends there because the objective function is not the GTM one, nor
is it optimised with the Expectation-Maximization (EM) algorithm. Instead,
the HaToM uses the well proved clustering abilities of the K-means algorithm,
improved by using harmonic means to make it insensitive to initialisation ([2]).

The basic batch algorithm often exhibited twists, such as are well-known in
the Self-organizing Map (SOM) [4], so we developed a growing method that pre-
vents the mapping from developing these twists. The latent points are arranged
in a square grid in a similar manner to the SOM grid.

We developed two versions of the algorithm (see [1]). The main structure for
the Data-driven HaToM or D-HaToM is as follows:

1. Initialise K to 2. Initialise the W weights randomly and spread the centres
of the M basis functions uniformly in latent space.

2. Initialise the K latent points uniformly in latent space.

3. Calculate the projection of the latent points to data space. This gives the
K centres, mk.

(a) count=0

(b) For every data point, xi, calculate di,k = ||xi − mk||.
(c) Recalculate centres, mk, using (2).

(d) If count<MAXCOUNT, count= count +1 and return to 2c

4. Recalculate W using (ΦT Φ + δI)−1ΦTΞ where Ξ is the matrix containing
the K centres, I is identity matrix and δ is a small constant, necessary
because initially K < M and so the matrix ΦT Φ is singular.

5. If K < Kmax, K = K + 1 and return to 2.
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We do not randomise W each time we augment K, but we use the value from
the previous iteration to update the centres mk with the increased number of
latent points.

If we wish to use the mapping for visualisation, we must map data points
into latent space. To do this, we define the responsibility that the kth latent
point has for the ith data point and the new data point is placed at yi

rik =
exp(−γdi,k)∑K
l=1 exp(−γdi,l)

yi =
K∑

k=1

ri,ktk (3)

where tk is the position of the kth latent point in latent space. γ is known as
the width of the responsibilities.

In the Model-driven HaToM or M-HaToM, we give greater credence to the
model by recalculating W and hence the centres, mk, within the central loop
each time. Thus we are explicitly forcing the structure of the M-HaToM model
on the data:

1. Initialise K and the W weights.

2. Initialise the K latent points uniformly in latent space.

(a) count=0

(b) Calculate the K centres, mk.

(c) For every data point, xi, calculate di,k = ||xi − mk||.
(d) Recalculate centres, mk, using (2).

(e) Recalculate W as in D-HaToM.

(f) If count<MAXCOUNT, count= count +1 and return to 2c

3. If K < Kmax, K = K + 1 and return to 2.

The visualisation of the yi values in latent space is the same as above. In
[1], we showed that this version had several advantages over the D-HaToM: in
particular, the M-HaToM creates tighter clusters of data points and finds an
underlying data manifold smoothly no matter how many latent points are used
in creating the manifold. The D-HaToM, on the other hand, is too responsive
to the data (too influenced by the noise), but as we shall see, this quality makes
it more suitable for outlier detection.

3.1 The Fundamental Clustering Problems Suite (FCPS)

In this paper we deal with the influence of outliers in the application of both
versions of HaToM. To illustrate outlier detection with HaToM, we used one
of the datasets (Target) that appears in The Fundamental Clustering Problems
Suite (FCPS)[5]; these datasets are all low-dimensional, but some algorithms like
K-Means have difficulty in clustering them because of the existence of outliers,
so they are suitable for illustrating the different visualisation capabilities of the
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Fig. 1: D-HaTom projection of the target data into latent space with Gaussian
kernels(left); the M-HaToM projections in latent space(right).

different kernels. Target comprises a two dimensional data set, consisting of
a tight cluster of points at the origin, with a surrounding but disjoint circular
manifold and 4 pairs of outliers, each pair close together but separate from all
other data points.

We see in Figure 1 that the Gaussian kernel-based responsibilities for the M-
HaToM does not separate properly the outliers from the rest of the data, though
it can do so for the D-HaToM. However, since we have previously identified M-
HaToM as having advantages in projection and clustering, we would like to
continue to use M-HaToM but find a way to make its projections of outliers
more explicitly different from the main body of the data.

To understand the reason for this difficulty, we show in Figure 2 the position
of the projections of the latent points for the two mappings. We see that the
noise-resistant properties of M-HaToM have resulted in no centres being drawn
to the outliers while in D-HaToM, several centres have been allocated to each
pair of outliers. Thus it is easy for the latter to identify outliers. To enable
the former to do so, we will use kernels which are more local when calculating
responsibilities.

4 Different Kernels for the Responsibilities

One of the main attractions of the HaToM compared with e.g. ToPoE is that
the algorithm does not require responsibilities. These are only used when we are
using HaToM to visualise data, i.e. when we are working in latent space, L. Thus
we do not have to give any consideration to probabilistic constraints, and the
computational effort is reduced. If yn is the point in latent space corresponding
to xn, we have

yn =
K∑

k=1

tkrkn ∈ L rkn =
exp(−(xn − mk)2)∑K

j=1 exp(−(xn − mj)2)
(4)

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

292



−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Fig. 2: The latent points’ projections (mk) into data space using D-HaTom(left)
, and those from the M-HaToM (right) with delta=0.001.

where tk is the coordinate of the kth latent point in L and rknis determined in
data space. (4) recalls the Nadaraya-Watson kernel estimator

f̂(x) =
∑N

i=1 Kλ(x0, xi)yi∑N
i=1 Kλ(x0, xi)

(5)

This might suggest that we could use other kernels for the responsibilities such
as the Epanechnikov quadratic kernel

Cλ(k, n) = D

( |xn − mk|
λ

)
where D(t) =

{
3
4 (1 − t2) if |t| < 1

0 otherwise (6)

or the tri-cube function with

D(t) =
{

(1 − t3)3 if |t| < 1
0 otherwise (7)

both of which are more local and have compact support with

rkn =
Cλ(k, n)∑K
j=1 Cλ(j, n)

yn =
∑K

k=1 tkCλ(k, n)∑K
k=1 Cλ(k, n)

(8)

In Figure 3, we show the effect of using the Epanechnikov kernel with both the
D-HaToM and M-HaToM: in both the outliers can be easily detected. Similar
results are achieved with the tri-cube kernel.

5 Conclusions

In this paper we reviewed both versions of the HaToM algorithm. We noted that
the previous success [1] of the M-HaToM in finding smooth manifolds and tight
clusters was based on features which meant that this algorithm found it difficult
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Fig. 3: The projection of the target data into latent space with Epanechnikov
kernels using D-HaTom (left), and M-HaToM(right).

to separate outliers from the main data manifolds. The D-HaToM did not share
this difficulty. However, by using local kernels when calculating responsibilities,
we were able to detect the outliers again easily in the projections. We illustrated
this on a simple two-dimensional data set. Future work will investigate the effect
on higher dimensional data.
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