ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

Variants of Unsupervised Kernel Regression:
General Cost Functions

Stefan Klanke and Helge Ritter

University of Bielefeld, Faculty of Technology, Neuroinformatics Group
P.O. Box 10 01 31, 33501 Bielefeld, Germany

Abstract. We present an extension to a recent method for learning of
nonlinear manifolds, which allows to incorporate general cost functions.
We focus on the e-insensitive loss and visually demonstrate our method on
both toy and real data.

1 Introduction

Unsupervised Kernel Regression (UKR) is a recent approach for the learning
of principal manifolds. It has been introduced as an unsupervised counterpart
of the Nadaraya-Watson kernel regression estimator in [1]. In this work, we
extend UKR by introducing general cost functions, which for example allows to
tune the method to specific noise models. The paper is organized as follows: In
the next section we recall the UKR algorithm, then we present our extensions
with a focus on the e-insensitive loss function and finally we show some example
experiments.

2 The UKR Algorithm

In classical (supervised) kernel regression, the Nadaraya-Watson estimator [2, 3]

0=y R (1)

is used to describe a smooth mapping y = f(x) that generalizes the relation
between available input and output data samples {x;} and {y;}. Here, K(-) is a
density kernel function, e.g. the Gaussian kernel K (v) o exp [—ztz||v||?], where
h is a bandwidth parameter which controls the smoothness of the mapping.

In unsupervised learning, one seeks both a faithful lower dimensional rep-
resentation (latent variables) X = (x1,X2,...,xx) of an observed data set
Y = (y1,¥2,-..,yn~n) and a corresponding functional relationship.

UKR addresses this problem by using (1) as the mapping from latent space
to data space, whereby the latent variables take the role of the input data and
are treated as parameters of the regression function. By introducing a vector
b(-) € RY of basis functions (holding the fraction of eq. 1), the latter can
conveniently be written as f(x; X) = Yb(x; X). While the bandwidth parameter
h is crucial in classical kernel regression, here we can set h=1, because the scaling
of X itself is free. Thus, UKR requires no additional parameters besides the

581

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

choice of a density kernel'. This distinguishes UKR from many other algorithms
(e.g. [4, 5]) that, albeit using a similar form of regression function, need an a
priori specification of many parameters (e.g. the number of basis functions).
Training an UKR manifold, that is, finding optimal latent variables X, in-
volves gradient-based minimization of the reconstruction error (or empirical risk)

1 1
RX) =5 > _lyi —fx: X = £ Y - YBX)|7, 2)
where the N x N-matrix of basis functions B(X) is given by
K(x; — %)
B(X))ij = bi(xj) = =———L—. 3
(())J (J) ZkK(Xk_Xj) ()

To avoid getting stuck in poor local minima, one can incorporate nonlinear
spectral embedding methods (e.g. [6, 7]) to find good initializations.

It is easy to see that without any form of regularization, (2) can be trivially
minimized to R(X) = 0 by moving the x; infinitely apart from each other. In
this case, since K(-) is a density function, V,.;||x; — x;|| — oo implies that
K (x; —x;) — §;; K(0) and thus B(X) becomes the N x N identity matrix.

2.1 Regularization approaches
2.1.1 Eztension of latent space

A straight-forward way to prevent the aforementioned trivial interpolation so-
lution and to control the complexity of an UKR model is to restrict the latent
variables to lie within a certain allowed (finite) domain X, e.g. a sphere of radius
R. Training of the UKR model then means solving the optimization problem

1
minimize R(X) = NHY —~YB(X)||3 subject to Vx| <R (4)

A closely related, but softer and numerically easier method is to add a penalty
term to the reconstruction error (2) and minimize Re(X,\) = R(X)+A D", ||Ix:[|
One may choose other forms of penalty terms, for example the general L,-norm.

With the above formalism, the model complexity can be directly controlled
by the pre-factor A or the parameterization of X. However, normally one has no
information about how to choose these parameters. Bigger values of A lead to
stronger overlapping of the density kernels and thus to smoother manifolds, but
it is not clear how to select A\ to achieve a certain degree of smoothness.

2.1.2 Density in latent space

The denominator in (1) is proportional to the Rosenblatt-Parzen density estima-
tor p(x) = + Zfil K (x—x;). Stronger overlap of the kernel functions coincides
with higher densities in latent space, which gives rise to another method for com-
plexity control. As in the last section, the density p(x) can be used both in a
constraint minimization of R(X) subject to V;p(x;) > n or in form of a penalty

function with some pre-factor A. Compared to a regularization based on the

Lwhich is known to be of relatively small importance in classical kernel regression

582

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

extension of latent space, the density based regularization tends to work more
locally and allows a clustered structure of the latent variables (non-contiguous
manifolds). Again, suitable values for A and 7 can be difficult to specify.

2.1.8 Leave-one-out cross-validation

Perhaps the strongest feature of UKR is the ability to include leave-one-out
cross-validation (LOO-CV) without additional computational cost. Instead of
minimizing the reconstruction error of a UKR model including the complete
dataset, in LOO-CV each data vector y; has to be reconstructed without using
y; itself:

ReolX) = 1 Y lyi — it X = LY - YBa(OI: (5)
' K(x —x)

£ =y X (6
;”z#imx—xn

For the computation of the matrix of basis functions B.,, this just means zero-
ing the diagonal elements before normalizing the column sums to 1. A similar
strategy works also for calculating the gradient of (5).

As long as the dataset is not totally degenerated (e.g. each y; exists at
least twice), LOO-CV can be used as a built-in automatic complexity control.
However, under certain circumstances LOO-CV can severely undersmooth the
manifold, particularly in the case of densely sampled noisy data. See Fig. 1 (left
plot) for a UKR curve fitted to a sample of a noisy spiral distribution as a result
of minimizing the CV-error (5).

3 General Cost Functions

Up to now, the UKR reconstruction error always contained the squared Eu-
clidean distance between training data and its reconstruction as an error mea-
sure. In Support Vector Regression it is common practice to replace this by a
more general cost function [8], either because it complies with a certain noise
model (e.g. L; loss for Laplacian noise) or because of application specific needs
(e.g. e-insensitive loss to match tolerance levels). For UKR, this means replacing
the squared Euclidean norm in (2) by a general cost function L(-), which yields

Ru(X) = 3 Y0 L0 — 05 X)) = - 3 Liwo), (7

with the residuals r; given by r; = y; — Yb(x;; X). Since UKR training involves
gradient-based minimization, the function L(-) has to be at least once differen-
tiable (L € C'). Then, letting Gj; = (VL(r;));, the gradient of the general
UKR cost function can be expressed by
OR(X) 1 T Oby, (%3 X)

=——= Y Gn———=. 8
The special case of L(-) being the squared Le-norm yields G =Y — YB(X),
whereby (8) coincides with the normal UKR gradient (see [1]). The L;-norm is
not differentiable and thus can not be used directly. However, Huber’s robust
loss function, which has the same asymptotic characteristics, can be deployed.

583

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

3.1 c-insensitive loss function

In Support Vector Regression a popular choice is the e-insensitive loss function

Lo(r) = { 0 Ir] < e)

rl—e [rl>e€

which is not differentiable at |r| = e. By squaring it, we get a differentiable
variant, which asymptotically behaves like the squared Euclidean error, but does
not penalize the UKR manifold as long as the reconstructions lie within an
epsilon box around the corresponding original data vectors.

Using this loss function without any form of regularization does not make
much sense, since a wiggly and a smooth manifold that both pass through the
above mentioned epsilon boxes do not differ in terms of the UKR loss. Fur-
thermore, simply adding a penalty term from section 2.1.1 or 2.1.2 still requires
the specification of a suitable pre-factor A\. A practical solution is to switch the
roles of penalty term and objective function and to choose a very large A. This
corresponds to solving the problem

minimize S(X) subject to Ry (X)=0, (10)

where for example S(X) = >, [x;[|> (cf. section 2.1.1). In other words, we
search the smoothest manifold (that of least possible latent extension) which
passes through every data vectors epsilon box. Of course, one still has to specify
suitable values for €, but this is geometrically much more intuitive and may even
be pre-defined by application specific needs.

Note that different data vectors may be assigned different e values. In prac-
tice, it works best to first fit a rather un-smooth manifold regularized by LOO-
CV and then use this result as an initialization for minimizing (10). This has the
advantage that one can check the residual errors made already by the un-smooth
manifold, which in turn gives an upper bound for the per-data-vector e-values.
This is a convenient tool for reducing the influence of outliers and guarantees a
valid solution. See section 4 for example experiments.

3.2 Comparison to feature space UKR

As another way of incorporating general and even non differentiable loss func-
tions, one might consider using feature space UKR. The basic idea is to con-
struct a Mercer kernel that implicitly maps the data to some feature space so
that the standard Euclidean norm in that space coincides with the demanded
loss function in data space. As an example consider the L;-kernel® k(y,y’) =
2(ly|+1y’|=|y — ¥'|]) through which the Euclidean distance between two feature
space images is given by ||®(y) — @(y')||?> = |y — ¥'|.

However, there is one main problem with feature space UKR: The regres-
sion function f(x;X) now linearly combines feature space images and cannot
be calculated explicitly for general Mercer kernels. Furthermore, there is no
guaranteed existence of a pre-image of such linear combinations.

2see [1] for a derivation and an application

584

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

4 Experiments

Noisy Spiral. As a first example, we fitted a UKR model to a 2D “noisy spiral”
toy dataset, which contains 300 samples with noise distributed uniformly in the
interval [—0.1;0.1]. For initialization, we calculated multiple LLE [6] solutions
of neighborhood sizes K = 4...12, which we compared with respect to their
CV-error after a coarse optimization of their overall scale. While this procedure
may seem rather computationally expensive, it greatly enhances the robustness,
because LLE and other nonlinear spectral embedding methods can depend crit-
ically on the choice of K. In this experiment, the best set of latent variables
belonged to K = 7, which we further fine-tuned by gradient-based minimization
using the RPROP scheme [9]. Please see [1] for a more detailed description of
UKR training. After fitting the CV-regularized manifold, we measured the errors
made in the reconstruction of each data vector, which served as an upper bound
for our per-data-vector e-values. The lower bound (responsible for smoothing
the curve) was set to € = 0.02, ¢ = 0.04, ¢ = 0.06 and finally ¢ = 0.08. Fig. 1
shows the UKR manifolds resulting from applying the constrained optimization
(10), which we realized by using Ry, (X) as a penalty term in conjunction with
the RPROP algorithm. Note the increasing smoothness of the curve for larger
values of €, which is paid with an increased bias towards the inner of the spiral.

Fig. 1: UKR model of a noisy spiral using LOO-CV and the e-insensitive loss function,
respectively. From left to right: CV regularized, ¢ = 0.02, ¢ = 0.04, ¢ = 0.06, ¢ = 0.08.
The black line shows f(x; X) sampled in latent space, the dots depict the original data
vectors.

USPS Digit “2”. As a second example, we fitted a 2D UKR manifold to the
subset of the USPS handwritten digits dataset corresponding to the digit “2”,
which consists of 731 data vectors in 256 dimensions (16x16 pixel gray-scale
images). Again, for initialization we picked an LLE solution (K = 12) from a
set of candidates and then fitted a CV-regularized manifold by minimizing (5)
with the RPROP scheme (for details please see [1]). In this dataset, most pixel
values are +1. Since for smoothing the manifold we wanted to ignore small
errors in the 16x16 image as a whole and not on a pixel-by-pixel basis, we used
the e-insensitive loss in the form L.(|ly — f(x)]|). The upper bounds for the
per-data-vector e-values were calculated like before. The lower bound was set
to € = 10, which roughly corresponds to 25 wrong pixels. Fig. 2 visualizes the
resulting manifolds by sampling f(x; X) on a grid in latent space and depicting
the function value as an 16x16 image. Note the smaller extension of latent space
and the blurrier images from the e-optimized manifold (right plot).

585

-8+t

-10

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

439292 3t ddadaad
3dddald2d2 233ddddad2
293dadddddd2l 2993ddad22
ddoJdAlrdd 1222 2 dadddddaddd22
 AADdAAAdAL221 1222 RAdddI I 222222
22392793322 22222222 1124223323222222222
223922 IdALL2222222 ddDad233dd222222222
QoduRaddddAlll22l2. QPaad@ddddll2zlzllll
QAQAARAAA2AALLL2272222 Qa2 A2222222222°2
dalQAdddAdddddZll Ll Jdodaaadddddllrz222’2’2
RRAAd A dd222222 daxRRA2AA3Iddr2r2z22222
ARRDI>2 22201222 -l RAceesssdsllZZZ
QI RRALAAZZ2ALL dddgPRALALZIZIY
ALZAALII 222D Ll ARARRRIL2I 2222
KRRZF QI L2222 REA2ALLZ22
22332222 LK323222
2Z2r22222 -3t Zidiirl2
P T o Zaiarirl
—dE A iz 22
‘ ‘ 2z ‘ ‘ ‘ =4t ‘ arzaa ‘
-6 -4 -2 0 2 4 6 -2 0 2 4

Fig. 2: UKR model of the USPS digit “2”, shown by evaluating f(x; X) on a 20x20
grid enclosing the latent variables. Grid positions of low density p(x) are left blank.
Left: CV regularized. Right: Squared e-insensitive loss as penalty function, ¢ = 10.

5

Conclusion

We presented an extension to the manifold learning method UKR, which now
allows to incorporate general cost functions. We focused on the e-insensitive loss
and demonstrated a practical optimization approach on both toy and real data.

References

[1]

P. Meinicke, S. Klanke, R. Memisevic, and H. Ritter. Principal surfaces from un-
supervised kernel regression. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(9):1379-1391, September 2005.

E.A. Nadaraya. On estimating regression. Theory of Probability and Its Application,
10:186-190, 1964.

G.S. Watson. Smooth regression analysis. Sankhya Series A, 26:359-372, 1964.
C.M. Bishop, M. Svensen, and C.K.I. Williams. GTM: The generative topographic
mapping. Neural Computation, 10(1):215-234, 1998.

A.J. Smola, R.C. Williamson, S. Mika, and B. Scholkopf. Regularized principal
manifolds. Lecture Notes in Computer Science, 1572:214-229, 1999.

S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290:2323-2326, 2000.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15 (6):1373-1396, June 2003.

A. Smola, B. Scholkopf, and K. Miiller. General cost functions for support vector
regression. In T. Downs, M. Frean, and M. Gallagher, editors, Proc. of the 9th
Australian Conf. on Neural Networks, pages 79-83, Brisbane, Australia, 1998.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In Proc. of the IEEE Intl. Conf. on Neural
Networks, pages 586-591, 1993.

586

