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Abstract. This contribution describes an almost parameterless iterative
context compilation method, which produces feature layers, that are espe-
cially suited for mixed bottom-up top-down association architectures. The
context model is simple and enables fast calculation. Resulting structures
are invariant to position, scale and rotation of input patterns.

1 Introduction

Images are influenced by change of illumination, perspective transformation or
varying subcomponents of scene objects. Therefore vision architectures have to
extract something from the original feature layer (i.e. image pixels) and create
higher (more abstract) invariant representations. Classical vision architectures
usually create higher feature layers by weighting and summing up intensity values
of neighboring pixels in the input image. The contribution of the investigated
neighborhood is given by a rigid mask. Position invariance can be accomplished,
if masks and weights are equal (shared) for each pixel. Some invariance can be
gained, if layers are stacked and sub-sampled iteratively [1, 2]. Additionally,
scale invariance is achievable, if features are detected at different resolutions [3].
Higher variances are yet not manageable with rigid masks [4]. A major problem
with this kind of layered architectures is, that they have to deploy discrete masks
for continuous variance characteristics, e.g. scale or rotation. This results in
different output layers with generalization problems for following associations.

Other approaches calculate context descriptors, which are invariant under
perspective transformation, e.g. [5, 6]. But this is problematic, when objects
appear with varying subcomponents like most everyday objects. The only known
solution to that problem is a hierarchical processing of invariant subcomponents,
which are efficient and can be combined to describe an object [7, 8]. The method
proposed in this paper is part of an architecture, which tries to implement such a
hierarchy. The processing starts from pixel level and detects feature layers with
increasing abstraction of representation. The processing on the feature layers is
described in this paper.

2 TIterative Context Compilation

The input representation of our iterative context compilation method consists of
two scalar values for each pixel. The scalar v represents the value of a feature,
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Fig. 1: Context Model. Values v are given by grey values on the feature layer.
For a position p on the layer, context information is given by the most essential
gradient ¢ of the environment, its translation vector 7 and their confidence c.

b

which is represented by the layer. On the lowest layer, this is the brightness of
a pixel. On higher layers, v can represent more spacious and abstract features
like the the curvature of a line or the skewness of a rectangle, etc. The scalar ¢”
describes the confidence of the value v. For the lowest (input image) layer the
confidence is set to one. On higher layers the confidence denotes the quality of
the association, that produced v.

From v and ¢?, the context compilation calculates the dominating local gra-
dient g, its translation vector 7 and their confidence ¢ (Fig. 1). This model can
describe simple spatial arrangements on a layer. More complex and abstract
representations can evolve on following higher layers using associations, which
combine underlying arrangements and produce new feature layers as output (this
is not subject of this paper).

In contrast to classical mask orientated feature extraction, our method also
describes image structures in areas, where no input activation is given (Fig. 2).
This is achieved using an iterative information forwarding, which provides every
pixel with context information. Moreover, this approach can be extended for
top-down changes of representations during the recognition process in parallel
with the context iteration, which is essential for visual pattern recognition [9].

Each feature layer is divided into cells ordered on a regular grid. We only
consider equilateral triangles, squares or hexagons. Every cell is indexed by a
position p, which might be a simple tuple (i,7) for the classical squares grid.
Values of neighbors of p are indexed by a lowered character. Sums over a neigh-
bor index include all elements of a dedicated neighborhood type, which can
involve different orders of neighborhoods. Table 1 shows orders, the amount of
participants and a corresponding geometric distance factor o.

border | 1% Neighbors | 2"¢ Neighbors | 3"% Neighbors
topology | length | # o # o # o
triangles V3 3 1 6 V3 3 2
squares 1 4 1 4 V2 - -
hexagons | 1/ V3 | 6 1

Table 1: Neighborhood distance factors o in dependence of cell topologies, given
cell gravity distances normalized to one. Values are shown for neighbors with
direct contact to the center cell only.
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Fig. 2: A classical mask operator (e.g. sobel) fills areas
with input activity within mask range only. The proposed
method fills the the complete feature layer with context
information of the next dominant gradient g of v. Context
is described by the translation vector 7 and the gradient
g, which can be referenced by the translated position p(7).
Note that the images show some artefacts due to the carry
of the angle projection.

At every iteration at time step t we first calculate local variables for each
cell and its first adjacent neighbors which are indexed by b. These variables are
the averaged local confidence ¢! and the local gradient §' which point in the
direction €} of the neighbor cell. Figure 3 shows the possible structure of the
representation and locations for a squared neighborhood grid.

g = TIEARD S~ (et o) @

In the second step, for each cell three variables are calculated, that are used
for an iterative information exchange between cells. The neighborhood cells
are indexed with a and use first and second neighbors in our simulations. The
gradient §(p,t) shows the dominant change of v in the environment of position p
at time step ¢ and the translation vector 7(p, t) where this change occurs relative
to the position p. The confidence ¢(p, t) reflects the reliability of the two vectors.

The confidence for the next time step sums up and weights local and exchange
confidence values:

1
C(p7t+1) = ;(AZO’bCé(p,t)+ZO’aCa(p,t)); no= )‘Zo—b+zo—a
b a b a
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Fig. 3: Example of a cell in a squared grid with cell boundaries with first neigh-
bors (b) for local values ¢! and §', first and second neighbors (a) for iteration
exchange of ¢, § and 7 between cells.

The factor g normalizes the geometric distances and a factor A weights the local
values. The gradient for the next time step is calculated by summation and
weighting neighbor gradients according to the neighbor confidence:

. _ 1 abcb( 0a Ca(pst)
gp.t+1) = M(/\Z (p7t+1 Lp,t +Z i1 D) ga(p,t))

The translation vector for the next time step is calculated by the sum of the
translation vectors in the neighborhood 7, (p,t) increased by the vectors €, in
the direction of the neighbor. Additionally, the results are weighted be the
corresponding gradient contributions g,(p,t). A simple proportion would by
the length of projection on the new gradient. But this yields very large values,
if some neighbors have gradients in opposite direction, while others are near
to zero. Therefore we use a proportion with similar results but without these
outliers, by taking absolute terms only:

3o (00 calp,t) [(Galp.8). 3o, +1)]| (Falp.t) + )
> (Ua ca(p,t) [(Ga(p,t),G(p, t + 1)>|)

rip,t+1) =

Note, that there are no contributions from boundary gradients g!. But they are
included in the new gradient g(p,t 4+ 1) and thereby decrease the new transla-
tion vector by a zero contribution indirectly, i.e., a local activation decrease the
translation vector.

3 Experimental Results and Conclusions

Simulations shown in Fig. 2 and 4 are calculated with A = 0.1 and 200 iterations.
They show, that the context compilation method yields similar structures, if
patterns are changed in position, scale or rotation and they show, that the
position referencing of § works properly.
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Fig. 4: Experimental results for technical and natural patterns (128x128 pixel)
after 200 iterations (10ms/iteration on a current PC).

The method is parameterized by A only. If it is set too high, the iteration
will get stuck somewhere within the layer. Otherwise the method yields similar
results over a wide range of A\ and converges always.

The feature layer is filled completely by context information, which is ad-
vantageous for association architectures, that should detect spacious distributed
structure. The context compilation is very efficient for detection, if the represen-
tation on higher layers is getting more sparse, because context information can
be transported over wide areas. In contrast, mask functions are computationally
very expensive, if applied in groups with different scalings or rotations over wide
areas.

A confidence calculation is integrated to facilitate mixed bottom-up and top
down processing of representation probabilities. Fig. 5 shows that the method
can cope with iterative changes of representations, which is important, when
activations are suppressed by top-down disambiguation. The layer may not be
recalculated completely for an input change. It can adapt itself in parallel to
input changes over time.

The method allows for very easy resolving of scale or rotation transformations
by top-down scaling or rotating 7 and §(p(7)) globally or even regionally.
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Fig. 5: Iterations after an input change at ¢ = 200. The context information
changes accordingly over the following iterations.
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