
Magnification control for batch neural gas

Barbara Hammer1, Alexander Hasenfuß1, and Thomas Villmann2

1- Clausthal University of Technology, Institute of Computer Science,
Clausthal-Zellerfeld, Germany, {hammer|hasenfuss}@in.tu-clausthal.de

2- University of Leipzig - Clinic for Psychotherapy and Psychosomatic
Medicine, Leipzig, Germany, villmann@informatik.uni-leipzig.de

Abstract. It is well known, that online neural gas (NG) possesses a mag-
nification exponent different from the information theoretically optimum
one in adaptive map formation. The exponent can explicitely be controlled
by a small change of the learning algorithm. Batch NG constitutes a fast
alternative optimization scheme for NG vector quantizers which possesses
the same magnification factor as standard online NG. In this paper, we
propose a method to integrate magnification control by local learning into
batch NG by linking magnification control to an underlying cost function.
We validate the learning rule in an experimental setting.

1 Introduction

Vector quantization constitutes an important technical problem in different ar-
eas of application such as data mining, control, image compression, or infor-
mation representation. Thereby, the tasks are diverse such as minimizing the
quantization error, optimum information transfer, classification, visualization, or
topographic map formation. Self-organizing quantization processes are a com-
mon property of many regions of the brain, including the visual, auditory, and
somatosensoric cortex. Neural gas (NG) as proposed in [9] constitutes a par-
ticularly robust vector quantization method which dynamics can be interpreted
as an overlay of standard vector quantization and diffusion. It can be extended
towards topographic maps with data optimum topology [10].

A characteristic property of vector quantizers consists in a selective magni-
fication of regions of interest. This corresponds to a specific connection of the
density of prototypes and stimuli. An information theoretically optimum magni-
fication factor one corresponds to an exact adjustment of the prototypes accord-
ing to the underlying data distribution. This magnification law is achieved by
approaches which explicitely optimize the information transfer or related quanti-
ties [8]. For a variety of popular alternatives, however, the magnification follows
a power law with exponent different from one [3, 9, 16]. Starting with the work
[1], schemes to control the magnification factor have been proposed in the liter-
ature, for recent results see e.g. [13]. Magnification control changes the learning
scheme and allows to achieve a magnification factor one or beyond. An explicit
control is particularly interesting for application areas where rare events should
be suppressed or, contrarily, emphasized, which has proven beneficial in several
tasks in robotics and image inspection [11, 15, 14]. In addition, this effect cor-
responds to biological phenomena such as the perceptual magnet effect which
leads to an emphasis of rarely occurring stimuli [5, 7]. The magnification factor
of online NG is D/(D + 2), D being the intrinsic (Hausdorff-)dimension of the
data manifold of stimuli. This can be controlled using e.g. local learning, which
changes the learning rate by a factor depending on the local data density [12].
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Neural gas is a very robust, but computationally complex method since sev-
eral thousands of learning cycles are necessary for convergence. For priorly
known training examples, an alternative batch update scheme becomes possi-
ble [2]: the cost function of neural gas is optimized in turn for the prototype
locations and hidden variables which correspond to the rank. Since each step
takes all training patterns into account and directly moves into the next local
optimum, much fewer training cycles are necessary. Unlike batch SOM, which
easily suffers from topological mismatches [4], a data optimum topology is used.

Batch-NG follows the same power law for the magnification factor as online
NG because of the same cost function. Here, we propose magnification control for
batch NG by including local learning into the update formulas. The link becomes
possible relating local learning to a modified cost function of NG which can be
optimized in the batch mode. We demonstrate this strategy by a controlled
example where the property of optimum information transfer can be tested.

2 Neural Gas

Assume data vectors v ∈ R
d are given as stimuli, distributed according to P (v).

The data points should faithfully be represented by prototypes wi ∈ R
d, i =

1, . . . , n. The objective of neural gas is a minimization of the cost function

E(W ) =
1

2C(λ)

n∑
i=1

∫
hλ(ki(v, W )) · ‖v − wi‖2P (v)dv

where W denotes the set of prototypes, ki(v, W ) = |{wj |‖v−wj‖2 < ‖v−wi‖2}|
is the rank of prototype i, hλ(t) is a Gaussian shaped curve for t ≥ 0 such as
hλ(t) = exp(−t/λ) with neighborhood range λ > 0, and C(λ) is a normalization
constant. The corresponding online adaptation rule is

Δwi = ε · hλ(ki(vj , W )) · (vj − wi)

with learning rate ε > 0, given a stimulus vj . This learning rule adapts all
prototypes according to their rank given vj .

This adaptation can be applied in online scenarios such as a robot explor-
ing an environment; however, usually several thousand steps are necessary for
convergence, and the procedure can become quite costly. If data are given pri-
orly, an alternative batch adaptation scheme can be applied. For a given (finite)
training set v1, . . . ,vp the cost function of NG becomes

Ê(W ) =
1

2C(λ)

n∑
i=1

p∑
j=1

hλ(ki(vj , W )) · ‖vj − wi‖2P (vj)

where P (vj) is usually estimated by 1/p. In batch optimization, the term
ki(vj , W ) is substituted by a free variable kij which is to be optimized un-
der the condition that k1j , . . . , knj yields a permutation of 0 to n− 1 for each j.
For fixed wi, optimum variables kij are given by the rank ki(vj , W ). In turn,
for fixed kij , optimum assignments of the prototypes have the form

wi =

⎛
⎝ p∑

j=1

hλ(kij) · vj

⎞
⎠/

⎛
⎝ p∑

j=1

hλ(kij)

⎞
⎠ .
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Batch NG consecutively performs these two steps until convergence, which can
usually be observed after only few epochs [2]. Batch NG always converges to a
fixed point of the assignments, which is a local optimum of the original (discrete)
cost function of NG unless two prototypes have the same distance from one data
point for the final prototype locations (with measure 0 for concrete settings).

3 Magnification control

Optimization schemes for the NG cost function result in a map formation which
obeys a magnification power law with magnification exponent different from
one as demonstrated in the literature [9]. In this argumentation, the effect
of an average update 〈Δwi〉 on the map behavior is investigated. Thereby,
several properties of the map are used, such as the fact, that the neighborhood
function hλ(ki(v, W ) converges sufficiently fast to 0 such that terms of higher
order can be neglected. In addition, the system is considered in the limit of
many prototypes, such that a continuum can be assumed. Then, the weight
density ρ(wi) of the map is linked to the density P (wi) given by the input space
by ρ(wi) ∼ P (wi)α with magnification factor α = D/(D + 2) where D is the
effective data dimensionality ≤ d [9]. For a given finite number of prototypes
and patterns this law approximately describes concrete maps.

Local learning introduces a learning rate for each training pattern:

Δwi = ε0 · P (ws(vj))
m · hλ(ki(vj , W )) · (vj − wi)

where ε0 > 0 is the learning rate and s(vj) is the winner for stimulus vj . m > 0 is
a constant which controls the magnification exponent. For this learning rule, the
power law ρ(wi) ∼ P (wi)α′

where α′ = (m+1) ·α = (m+1) ·D/(D+2) results,
as shown in [12]. An information theoretically optimum factor is obtained for
m = 2/D. Larger values emphasize input regions with high density, whereas
smaller values focus on regions with rare stimuli. To apply this learning rule,
the distribution P as well as the effective data dimensionality D have to be
estimated from the data (using e.g. Parzen windows resp. the box counting
dimension). Here, we consider the similar learning rule

Δwi = ε0 · P (vj)m · hλ(ki(vj , W ))(vj − wi) .

The average can be formulated as integral

〈Δwi〉 ∼
∫

P (v)m · hλ(ki(v, W )) · (v − wi) · P (v)dv .

In the limit of a continuum of prototypes, ws(v) = v holds, thus, the average
update yields exactly the same result as the original one proposed in [12] and
the same magnification factor (m + 1) · α′ results. This alternative update has
the benefit that it constitutes a stochastic gradient descent of the cost function

Em(W ) =
1

2C(λ)

n∑
i=1

∫
P (v)m · hλ(ki(v, W )) · ‖v − wi‖2 · P (v)dv

as shown in Appendix A. Thus, learning schemes which optimize Em(W ) yield
a map formation with magnification factor α′ as given above.
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Fig. 1: Entropy of map formation for different values m of magnification control
and training sets of intrinsic dimensionality d ∈ {1, 2, 3}. The arrows indicate
the expected optima of the entropy according to the underlying theory.

The formulation of magnification control by means of a cost function opens
the way towards an extension of control schemes to batch learning: For a given
discrete set, the cost function becomes

Êm(W ) =
1

2C(λ)

n∑
i=1

p∑
j=1

hλ(ki(vj , W )) · ‖vj − wi‖2 · P (vj)m .

As beforehand, we substitute the terms ki(vj , W ) by hidden variables kij which
are chosen from {0, . . . , n − 1} such that k1j , . . . , knj constitutes a permutation
of {0, . . . , n−1}. Batch optimization in turn determines optimum kij , given pro-
totype locations, and optimum prototype locations, given values kij , as follows:

1. kij = |{wl | ‖vj − wl‖2 < ‖vj − wi‖2}|,

2. wi =
(∑

j hλ(kij) · P (vj)m · vj

)/(∑
j hλ(kij) · P (vj)m

)
It is shown in Appendix B that this procedure converges in a finite number of
steps towards a fixed point. The fixed point is a local minimum of the original
cost function Êm(W ) if the distances of the final prototype locations from the
data points are mutually different (which is almost surely the case in concrete
settings). This offers a batch adaptation scheme with magnification coefficient
(m + 1) · D/(D + 2) which can explicitely be controlled by the quantity m.

4 Experiments

Control experiments use the distribution (x1, . . . , xd,
∏d

i=1 sin(π · xi)) for d ∈
{1, 2, 3} and xi uniformly distributed in [0, 1]. The number of points is 2500
(d = 1), 5000 (d = 1), and 10000 (d = 3). Obviously, the intrinsic dimensionality
is d, such that optimum information transfer can be expected for m = 2 (d = 1),

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

10



m = 1 (d = 2), and m = 2/3 (d = 3). All experiments have been performed
for m ∈ [−1.5, 3.5] (step size 0.25) such that the overall behavior of the local
learning rule for different m can be observed. An NG network with 50 neurons,
initial neighborhood size 25 (multiplicatively annealed to 0), and 200 epochs per
training run has been used. The reported results have been averaged over 20
runs. The data density P (v) has been estimated by a Parzen window estimator
with bandwidth given by the average training point distances divided by 3.

The entropy of the winner counts of the map is reported in Fig. 1. The
entropy should be maximum for optimum information transfer, i.e. we expect
the optimum for m = 2, m = 1, and m = 2/3, respectively. As indicated by the
arrows, the experimental optimum of the curves is very close to the expected
theoretical values in all cases, thus confirming the theory presented in this paper.

5 Discussion

Linking local learning to a general cost function, we have transferred magnifi-
cation control to batch NG and demonstrated the applicability in a controlled
experiment. This method opens the way towards interesting applications of the
fast batch-NG scheme: apart from an optimum information transfer, a mag-
nification of rare events which is relevant for the classification of unbalanced
classes, visualization of uncommon effects, or modeling attention becomes pos-
sible. We would like to mention that batch NG can naturally be transferred to
proximity data for which no embedding into a euclidian vector space is available.
Magnification control can immediately be applied to this important scenario.

Appendix A

The derivative of the cost function Em(W ) is given by

∂Em(W )
∂wl

= − 1
C(λ)

∫
hλ(ki(v, W )) · (v − wl) · P (v)m+1dv

+
1

2C(λ)

n∑
i=1

∫
h′

λ(ki(v, W )) · ∂ki(v, W )
∂wl

· ‖v − wi‖2 · P (v)m+1dv .

ki(v, W ) =
∑n

o=1 θ(‖v − wi‖2 − ‖v − wo‖2), where θ is the Heaviside function
with symmetric and for inputs 	= 0 vanishing derivative δ. The first term yields
the update rule. The second term equals the vanishing term

1
C(λ)

∫ ( n∑
o=1

−h′
λ(kl(v, W )) · δ((v − wl) − ‖v − wo‖2) · (v − wl) · ‖v − wl‖2+

n∑
i=1

h′
λ(ki(v, W )) · δ(‖v − wi‖2 − ‖v − wl‖2)(v − wl)‖v − wi‖2

)
P (v)m+1dv .

Appendix B

Consider the cost function

Êm(W ) =
1

2C(λ)

n∑
i=1

p∑
j=1

hλ(ki(vj , W )) · ‖vj − wi‖2 · P (vj)m .
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For each W , batch NG determines unique optimum assignments kij(W ) :=
ki(vj , W ) where we assume a fixed priority in case of ties. These values stem
from a finite set. Conversely, for given kij(W ) unique optimum assignments W ′
are determined by batch NG. We consider the auxiliary function

Q(W ′, W ) :=
1

2C(λ)

n∑
i=1

p∑
j=1

hλ(kij(W )) · ‖vj − w′
i‖2 · P (vj)m

which is connected to Êm(W ) via Êm(W ) = Q(W, W ). Assume prototype loca-
tions W are given and new prototype locations W ′ are computed in one cycle of
batch-NG. It holds Êm(W ′) = Q(W ′, W ′) ≤ Q(W ′, W ) because kij(W ′) are op-
timum assignments for the kij given W ′. In addition, Q(W ′, W ) ≤ Q(W, W ) =
Êm(W ), because W ′ are optimum assignments of the prototypes given values
kij(W ). Thus, Êm(W ′) − Êm(W ) = Q(W ′, W ′) − Q(W ′, W ) + Q(W ′, W ) −
Q(W ′, W ′) ≤ 0, i.e. the value of the cost function decreases in each step. Be-
cause there exists only a finite number of different values kij , the procedure
converges after a finite number of steps towards a fixed point W ∗.

Assume that the distances of training points from W ∗ are mutually different.
Then, the assignment W 
→ kij(W ) is constant in a vicinity of W ∗. Thus, Êm(·)
and Q(·, W ∗) are identical in a neighborhood of W ∗ and a local optimum of
Q(·, W ∗) is also a local optimum of Êm. Hence, W ∗ is a local optimum of Êm.
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