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Abstract. Invariance is a necessary feature of a visual system able to
recognize real objects in all their possible appearance. It is also the pro-
cessing step most problematic to understand in biological systems, and
most difficult to simulate in computational models. This work investi-
gates the possibility to achieve viewpoint invariance without adopting any
explicit theorical solution to the problem, but simply by exposing a hier-
archical architecture of self-organizing artificial cortical maps to series of
images under various viewpoints.

1 Introduction

Invariance in vision is the ability to recognize known objects despite large changes
in their appearance on the sensory surface. It is one of the hardest steps in vision,
under two different perspectives. First of all, it is the most challenging process in
artificial vision system. On the other hand, it is one of the feature in biological
vision system most difficult to understand. Related to invariance there are also
theoretical issues, rising up to philosophical level, about the nature of mental
representations, for example whether or not objects are represented in the brain
in a object-centered geometrical format.

Invariance is actually a collection of abilities concerning several classes of
changes. There are, again, two kind of taxonomies, a formal one, in group-
theoretic terms, well suited for a computational approach to the problem [1], and
others, more informal, used in perceptual and neurocognitive studies [2]. The
latter includes form of invariance not strictly described by the formal definitions,
for example the so called “cue-invariance”, the ability to recognize an object, like
the Eiffel Tour, either in reality, from a photograph, or a line drawing [3].

The kind of invariance mostly tackled by models is translation [4, 5, 6].
However, the most difficult type of invariance is the change of viewpoint in three
dimension, that can affect dramatically the appearance of the object in a two
dimensional projection. Most of the current attempt are based on some mathe-
matical strategies that are known to solve or at least facilitate the problem: like
second-order isomorphism of shapes [7], max operation over a pool of feature
detectors [8], or matching against visual fragments identified by maximal mu-
tual information [9]. Here instead there is no explicit design of how invariance
should be achieved, the attempt is to investigate the possibility of a sponta-
neous emergence of invariant responses in a model of hierarchical cortical maps,
gradually exposed to real images under different viewpoints. The only mathe-
matics reproduced in the model are the basic mechanisms of plasticity, together
with a reconstruction of the essential pathway of the visual system, under a
neuroconstructivist philosophy [10].
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Fig. 1: Overall scheme of the model

2 Modeling the Development of Cortical Maps

The first mathematical model of how the visual cortex can spontaneously de-
velop its mature organization was proposed in [11]. The mechanism, generally
referred as self-organization, is based on the self-reinforcing local interaction,
corresponding to Hebbian plasticity, constrained by competition, that takes into
account the limitation of biological resources. The two mechanisms are mod-
eled by von der Malsburg in systems of differential equations, simulating visual
organizations like retinotopy, ocular dominance and orientation sensitivity.

A recent model, called LISSOM (Laterally Interconnected Synergetically Self-
Organizing Map), attempts to achieve self organization using the same combi-
nation of Hebbian reinforcement with a constraining action. Moreover, this
architecture, despite its simplicity, includes lateral connections, a fundamental
organizational structure of the cortex [12, 13]. In this model each neuron is
not just connected with the afferent input vector, but receives excitatory and
inhibitory inputs from several neighbor neurons on the same map:

x
(k)
i = f

(
γA�arA,i · �vrA,i + γE�erE,i · �x (k−1)

rE,i − γH
�hrH,i · �x (k−1)

rH,i

)
, (1)

where x
(k)
i is the activation of the neuron i at time k. All vectors are composed

by a circular neighborhood of given radius around the neuron i: vectors �x (k−1)

are activations of neurons on the same layer at the previous time step. Vector
�vrA,i comprises all neurons in the underlying layer, in a circular area centered on
the projection of i on this layer, with radius rA. Vectors �arA,i, �erE,i, and �hrH,i

are composed by all connections strengths of, respectively afferent, excitatory or
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viewpoint rotation image LOC map
avg stdv avg stdv

10o 0.904 0.070 0.990 0.015
20o 0.838 0.106 0.970 0.031
30o 0.781 0.140 0.943 0.056
40o 0.729 0.167 0.913 0.077
50o 0.686 0.192 0.885 0.094
60o 0.648 0.221 0.848 0.120

Table 1: Correlations between images affected by viewpoint transformation, and
the corresponding LOC map, averaged over all 100 objects.

inhibitory neurons projecting to i, inside circular areas of radius rA, rE, rH. The
scalars γA, γE, and γH, are constants modulating the contribution of afferents,
excitatory and inhibitory connections. The map is characterized by the matrices
A,E,H, which columns are all vectors �a, �e, �h for every neuron in the map. The
function f is any monotonic non-linear function limited between 0 and 1. The
final activation value of the neurons is assessed after a certain settling time K.

All afferent connections to a neuron i adapt by following the rule:

Δ�arA,i =
�arA,i + ηxi�vrA,i

‖�arA,i + ηxi�vrA,i‖ − �arA,i, (2)

similarly for weights �e and �h. The learning follows the Hebb rules, adding a
normalization to prevent the weight values from increasing without bound, and
is an abstraction of the neuronal regulatory processes [14]. Recently this type
of map has been used to approach object recognition in a hierarchical model
[15, 10]. Here a similar model is used to investigate invariance with respect to
viewpoint. As visible in Fig. 1, the model uses the green and red plane of color
images, as long and mid-wave photoreceptors, which are known to be dominant
in the foveal area. The following maps act as extracortical pre-processing, and
include simple on-center and off-center cells, as well as color-opponent cells [16].
The cortical process proceeds along two different streams: on the left the two
spectral component are integrated and processed as intensity signals, while the
right stream takes into account the chromatic information. The two paths joint
in the map LOC, named by analogy with an area, the Lateral Occipital Complex,
that recently has been shown to exhibit remarkable invariance properties in the
human visual system [17, 18].

3 Invariance through hierarchy

The input used for the experiments is the COIL-100 collection of ordinary objects
[19]. For each object there are 72 images taken at 5 degree incremental rotation
on a turntable.
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Fig. 2: Scheme of the SOM classifier connected to the entire content of the LOC
map.

Since the LOC map has still certain retinotopic organization, a first way of
assessing the amount of invariance, can be by measuring the difference between
the activation in the entire map in response of views of the same object, compared
with the difference between views at retinal level. This measure can be done by
computing the cross-correlation of the maps. Logically speaking it sounds odd
to measure “amount” of invariance, in fact a better name would be tolerance to
changes: even in the biological visual system there is no area where invariance to
transformations is absolute, but we keep “invariance” here since it is the usual
name of the phenomenon.

A first assessment of the amount of invariance in degrees, on the LOC map,
can be estimated measuring the cross-correlation between the responses at dif-
ferent views, compared with the same cross-correlation at retinal level. Table 1
shows the correlation values in the LOC map, for several amount of viewpoint
rotations.

An other important measure of invariance is in terms of its success for the
final identification of an object despite changes in viewpoint. In order to estimate
the correctness in recognition as a function of invariance, the content of the LOC
map of the model has been clustered using a SOM map, used as unsupervised
classifier. The arrangement is shown in Fig. 2. After the training phase, in the
SOM every neuron has been labeled by the largest number of images of the same
object the neuron responds to. Being o an object of the COIL set O, x a node
of the SOM, and v(·) the function associating a winner neuron in the SOM to
the image given as input to the LISSOM model, the labeling function l(·) is the
following:

l(x) = arg max
o∈O

{∣∣∣
{

I
(o)
i : x = v

(
I
(o)
i

)}∣∣∣
}

, (3)

with I
(o)
i an image of the COIL database representing object o at viewpoint i,

and being |·| the cardinality of a set. The accuracy follows immediately as:

a(o) =

∣∣∣
{

I
(o)
i : l

(
v

(
I
(o)
i

))
= o

}∣∣∣∣∣∣
{

I
(o)
i

}∣∣∣
. (4)
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training mean accuracy % accuracy=1.0

3 views 0.816 37
9 views 0.817 38
18 views 0.832 41
36 views 0.801 42
72 views 0.820 32

Table 2: Accuracy in objects identification over 72 viewpoint rotations, as a
function of the number of views used in the training. The rightmost column
shows the percentage of object with accuracy 1.0 (all views correctly identified).

It is interesting to evaluate the accuracy resulting form invariance, as a func-
tion of the number of views known by the model, through the learning phase. In
table 2 are shown the results ranging from just three views for each object, up
to 72 views, the full set. It can be seen that a small fraction of all possible views
is enough for learning almost all the invariance achievable in the LOC map, and
the improvement with more views is marginal.

In Fig. 3 a few samples of objects are shown, with the resulting activations
in the LOC map. It is evident that neurons in LOC display a limited retinotopy,
and some code specifically for object features independent from the view. In fact
several of the patterns of activations remain almost constant during rotation,
while some others depend on the view.

Fig. 3: Invariance properties of the LOC map for sample objects. The rows are,
from top to bottom, the front view, and at viewpoint rotations of 30o and 60o.

4 Conclusions

As every model, also the one here described is a drastic simplification with
respect to the rich complexity of phenomena in a biological visual system. It
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is also surely limited in explaining invariance, which in animals is certainly the
result of many different concurrent analysis. It indeed reach the goal of showing
how a remarkable tolerance with respect to view point changes can emerge only
by exposure to views of objects, by basic plasticity mechanisms.
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