
Sanger-driven MDSLocalize
– A comparative study for Genomic Data

Marc Strickert1, Nese Sreenivasulu2, Udo Seiffert1

1 - Pattern Recognition Group, 2 - Gene Expression Group
Institute of Plant Genetics and Crop Plant Research Gatersleben, Germany
{stricker,srinivas,seiffert}@ipk-gatersleben.de

Abstract. Multidimensional scaling (MDS) methods are designed to establish a
one-to-one correspondence of input-output relationships. While the input may be
given as high-dimensional data items or as adjacency matrix characterizing data
relations, the output space is usually chosen as low-dimensional Euclidean, ready
for visualization. MDSLocalize, an existing method, is reformulated in terms of
Sanger’s rule that replaces the original foundations of computationally costly singu-
lar value decomposition. The derived method is compared to the recently proposed
high-throughput multi-dimensional scaling (HiT-MDS) and to the well-established
XGvis system. For comparison, real-value gene expression data and corresponding
DNA sequences, given as proximity data, are considered.
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1 Introduction

Dimension reduction and visualization are ever-challenging topics in data processing.
Large data bases from high-throughput measuring devices in bio-, geo- and other sci-
ences are ready for analysis. Before detailed analyzes and model creation, data inspec-
tion is very important for the identification of relevant system parameters and interde-
pendencies. Faithful data displays help to get a feeling about data densities and class
distributions. Kohonen’s self-organizing map (SOM) is one of the most widely used
methods for dimension reduction and visual data inspection, and it has been success-
fully applied to virtually any kind of data [7]. SOM mappings project data onto nodes
(’clusters’), which yields desired complexity reduction at the undesired expense of loss
of specific data characteristics: boundary SOM-nodes capture data outliers and might
produce a misleadingly homogeneous data representation. For this reason, a sensitive
one-to-one correspondence of input item and output counterpart might be preferred.
Multidimensional scaling (MDS) methods seek to establish such correspondence be-
tween input and output data with a minimum of model parameters. An additional ad-
vantage of MDS approaches is their ability to directly deal with proximity data, which
for SOM is an ongoing issue [2, 5, 6]. In earlier studies, the SOM has been compared
with Sammon’s mapping, a straight-forward realization of MDS. Usually, the computa-
tional requirements of MDS are quite high in contrast to SOM, but recent developments
allow to handle even large datasets accurately [10]. Another efficient MDS version,
called MDSLocalize, is pretty much related to principal component analysis (PCA),
but it is ready for directly dealing with proximity data. In this paper, a reformulated
version of this method is studied in detail.
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2 Multidimensional Scaling (MDS) revisited

Two main applications of multidimensional scaling are the reduction of the input space
dimension and the – mostly visual – reconstruction of interrelationships between the
input data. Dimension reduction is attained by calculating pairwise data vector dis-
tances according to a definable similarity measure; these are used for reconstructing
replacements given by adaptive points in low-dimensional Euclidean space. Thereby,
metric conversion is realized if input vectors are compared by metrics different from the
Euclidean, such as general Minkowski metrics or just measures of dissimilarity, such
as 1-correlation. This way, abstract data relations are embedded in an intuitive visual
space. The crucial ingredient to MDS is a cost function that maximizes the quality of
reconstruction, or equivalently, an expression that minimizes the stress. Several stress
functions with specific convergence properties and optimization goals exist that lead
to different target point configurations, i.e. to distinct data views. Here, three itera-
tive MDS approaches are considered, a new formulation of MDSLocalize, the recently
proposed HiT-MDS, and the XGVis system.

2.1 Sanger-driven MDSLocalize

If n data vectors xi were available, and not just n2 mutual similarities dij , principal
component analysis (PCA) would be a standard for dimension reduction. It can be
shown that the projection of data to the most prominent eigenvectors of the data cor-
relation matrix corresponds to the configuration of target points that, by their distances
d̂ij , minimize the classical stress function s =

∑n
i<j(dij − d̂ij)2 → min [4]. Thereby

and in the following symmetric proximity data are assumed. For mid-size data sets
the required eigendecomposition can be efficiently computed by using linear algebra.
The original MDSLocalize algorithm proposed by Drineas et al. [3] is a closed form
approach to MDS, but for directly processing a given data distance matrix, not a corre-
lation matrix. MDSLocalize is based on singular value decomposition (SVD):

1. Centering: τ(D) = − 1
2LDL, with L = I − 1

n1.

2. SVD: Compute rank-d approximation to τ(D) by τd(D) = Ud Sd UT
d .

3. Return X̂ = Ud Sd.

This algorithm has been shown to yield good reconstruction results also in the pres-
ence of noisy distance information, and even missing distances can be inferred [3].
In closed-form SVD realizations memory requirements and runtime might become a
bottleneck for large scale applications with dense proximity data. For this reason an
alternative formulation with striking simplicity is offered here. It is based on PCA,
realized by Sanger’s rule, a well-known cascading of Oja’s neural approach to eigen-
vector approximation. Sanger’s one-layer feed-forward networks yield eigenvectors
ordered descendingly according to their importance for explaining data variances [9].
Both the centering step and the PCA iterations only require few lines of code. The total
memory requirement is less than O(2 · n2), determined by the distance matrix which,
due to symmetry, can be used to store intermediate centering results.

SVD can be easily reformulated by PCA: in the SVD step τ(D) = USUT the
columns of U contain the eigenvectors of τ(D) τ(D)T. Since symmetry of D and,
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consequently, of τ(D) is a precondition, the required eigenvectors U of τ(D) τ(D)T
and the eigenvectors V of τ(D) are the same, because eigendecomposition into eigen-
vectors V and eigenvalue matrix Λ is:

τ(D) = V ΛVT ⇒ τ(D) τ(D)T = (V ΛVT) (V ΛVT)T = V Λ2 VT .

After subtracting the average row from the centered distance matrix τ(D), the first d
eigenvectors of V = (vi) are obtained per component by Sanger’s rule:

∆vij = γ· < x,vi > · (x −
i∑

k=1

< x,vk > · vkj) , i = 1 . . . d, j = 1 . . . n .

This iterative scheme cycles through shuffled rows x of τ(D), starting with randomly
initialized orthogonal eigenvectors of unit length or the standard basis vector system.
After convergence, eigenvector normalization to unit length is forced for subsequent
calculations. The corresponding eigenvalues λi are extracted from the eigensystem
equations τ(D)vi = λi · vi: the first row, for example, of τ(D) is projected to the
i-th eigenvector and divided by the first component of that eigenvector, which yields
λi. For redundancy, any other than the first row and component could be used. The
singular values si required on the diagonal of S in the return step are just the square
roots si =

√
λi of the calculated eigenvalues.

In summary, the steps of the Sanger-driven MDSLocalize are: 〈1〉matrix centering,
〈2〉 mean subtraction moving the average row to origin, 〈3〉 Sanger-driven eigenvector
determination, 〈4〉 calculation of corresponding eigenvalues/singular values, 〈5〉 scaling
d eigenvectors by their singular values to yield X̂.

Parameters of the iterative MDSLocalize are: the number of eigenvector iterations,
typically about 1000 epochs of the rows constituting the distance matrix, the eigenvector
adaptation rate γ, usually a value in [0.1/n; 0.0001/n], and the desired reconstruction
dimension d, e.g. 1,2, or 3 for visualization.

2.2 HiT-MDS and XGVis

Two other approaches to MDS-based proximity data reconstruction are considered. One
is the recently proposed high-throughput method HiT-MDS which implements a straight
forward stress function, the maximization of Pearson correlation between the input and
the reconstructed distance matrix [10]. The other one is the a well-established multiple
purpose software package XGvis 1 which allows power transformations of the input
distances prior and even during the embedding phase [1]. Its optimization goal is exact
distance reconstruction, i.e. a unit slope in the corresponding Shepard plot. In con-
trast to that, the maximum correlation approach of HiT-MDS, corresponding to lines
of arbitrary slope, imposes less obstructive conditions on the optimization, which leads
to much faster convergence. For both methods the program defaults are used for the
experiments, and a plateau in the stress function is the termination criterion.

2.3 Evaluation Criteria

Quality measures are required to evaluate the reliability of calculated MDS embed-
dings. Two complementing ways to look at the input-output relationships are, first, to

1http://public.research.att.com/˜stat/xgobi/
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which extent output space neighbors are also neighbors in the input space (backward-
criterion: trustworthiness), second, to which extent neighbors in the input space do also
have corresponding neighbors in the output space (forward-criterion: continuity). The
formal definition of trustworthiness and continuity with comparative studies has been
first given by Venna and Kaski [11]. Both measures are derived from the ranks of neigh-
borhood point sets in input and output space, usually for a neighborhood size interval
between 1 and n/2. Both quality measures have their theoretic maximum at one for
perfect embedding and a minimum of zero for worst reconstruction. Another struc-
turally different quality evaluation criterion is the squared correlation r2 of the original
input matrix and its reconstruction, calculated for the upper triangular matrix without
diagonal elements. Zero means bad embedding, one perfect embedding.

3 Visualization of Barley Genomic Data

Two data sets of interest are taken from gene expression of developing barley grains.
One set of 1660 differentially expressed genes obtained by macroarray hybridization is
considered that characterize 14 developmental time points of barley grain tissue. For
these genes, a second set of expressed sequence tags, given as DNA strings between
345 and 690 nucleotides, is available.

Expression data. For clustering of similar and co-expressed genes, different defin-
itions of similarity are used to obtain different groupings. Two similarity measures are
considered, the standard Euclidean distance of the log-normalized data, and the Euclid-
ean distance of the ranks of the 14-dimensional expression vectors, which is closely
related to Spearman rank correlation. Both distance matrices are computed once and
used for the three MDS methods.

Results. The left column of Fig. 1 corresponds to results for Euclidean distance.
All three MDS techniques yield very similar high-quality results, which is confirmed in
the quality plots and by the first column of Tab. 1. Rank-based distances, however, as
shown in the center column, lead to different results. Interestingly, the relatively high
degree of dispersion of MDSLocalize (Fig. 1 top center) produces the worst quality
curves (bottom center), but the distance correlations of original and reconstruction are
still at intermediate level (Tab. 1 third column). Both Euclidean and rank-based sources
yield two major clusters of higher data density. These are related to sequences of genetic
temporal up- and down-regulation and revealed by all three methods.

Sequence proximity data. The DNA sequences have been aligned by the com-
monly used ClustalW package for multiple alignment. Alignment scores scij are trans-
lated according to Oja et al. [8] into dij = − log(scij/(200 − scij)) (sckk = 100).

Results. The right column of Fig. 1 shows reconstructed DNA sequence distances.
Embedding is difficult, because all pairs have got very similar large distances. This is
confirmed by the low embedding qualities. A visual approximation by uniform spheri-
cal point distribution is obtained by XGVis in the third row. Since there is more struc-
ture in the data, other embeddings are obtained by MDSLocalize, which amplifies the
asymmetry, and HiT-MDS, which seeks to find a compromise. MDSLocalize yields
intermediate results for trustworthiness and continuity, but, at the same time, the corre-
lation value r2 in Tab. 1 is very low.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

268



-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1  0  1  2  3  4
-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5  3
-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1  1.5

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1  0  1  2  3  4
-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5
-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1  0  1  2  3  4
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

0.97

0.98

0.99

 1

   200   400   600   800

MDSLoc.(trust.)
MDSLoc.(cont.)

HiT-MDS (trust.)
HiT-MDS (cont.)

XGvis (trust.)
XGVis (cont.)

0.88

 0.9

0.92

0.94

0.96

0.98

 1

   200   400   600   800
0.55

 0.6

0.65

 0.7

0.75

 0.8

   200   400   600   800

Fig. 1: Embeddings and quality. Left to right: Euclidean expression data, rank-based
expression data, and DNA sequence similarity; each set related to proximity matrices of
1660 genes. Top to bottom: MDSLocalize, HiT-MDS, XGVis, and embedding quality
charts corresponding to the embedding task. Embedding coordinates have been nor-
malized by variance-based rescaling and coordinate transform of eigenvectors to unit
vectors. Directional ambiguities have been resolved by flipping embedded dimensions
to yield negative skewness. In the bottom row of plots, qualities are given as trustwor-
thiness and continuity vs. neighborhood size 1. . . 830.
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Set expression Eucl. expression rank sequ.-proximity
r2 of A/B/C 0.995/0.997/0.996 0.973/0.983/0.962 0.168/0.479/0.263

Table 1: Distance correlations. A: MDSLocalize; B: HiT-MDS; C: XGVis.

4 Discussion and Outlook

MDSLocalize has been revisited and reformulated from SVD to iterative Sanger-driven
PCA. Thereby, the most time-consuming operation is shifted from the SVD step to the
centering step with its time complexity of O(n3). For the considered set of 1660 genes
it is the fastest method, requiring about 122 seconds, in contrast to HiT-MDS which
takes 253 seconds, and XGVis with more than 1000 seconds before entering the conver-
gence phase. As demonstrated, all three methods perform well for Euclidean distance
matrices. However, for rank-based data and the sequence distance matrix, HiT-MDS
yields the best overall results. Still, Sanger-driven MDSLocalize is a fast alternative
for embedding proximity data. Future studies will show, if an optimization of the cen-
tering step can be found to make MDSLocalize more widely accepted. C sources for
MDSLocalize and HiT-MDS are available at http://hitmds.webhop.net.
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