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Abstract. Any order parameter quantifying the degree of organisation
in a physical system can be studied in connection to source extraction
algorithms. Independent component analysis (ICA) by minimising the
mutual information of the sources falls into that line of thought, since it can
be interpreted as searching components with low complexity. Complexity
pursuit, a modification minimising Kolmogorov complexity, is a further
example. In this article a specific case of order in complex networks of self-
sustained oscillators is discussed, with the objective of recovering original
synchronisation pattern between them. The approach is put in relation
with ICA.

1 Interactions in complex systems

Synchronisation is a commonly encountered phenomenon in complex systems
consisting of many interacting nonlinear oscillatory elements, each with a stable
limit cycle [1]. Such dynamic systems are present in nature, e.g., nervous systems
[2] or chemical oscillators [3], and in technical devices like Josephson’s junction
[4]. Inference about the interactions in complex systems is also related to such
omnipresent phenomena as self-organisation and the 1

f
noise [5].

The quantification of synchronisation in complex systems from empirical
measurements is accompanied with a difficulty: access to the individual oscilla-
tors is crucial otherwise spurious synchronisation will be measured [6]. In many
fields these are not easily available, but one rather deals with superpositions of
several elementary oscillators [7]. Below it is addressed how the original oscil-
lators could be regained by postulating a general synchronisation structure for
the system.

2 Superpositions and phase synchrony

Phase synchrony between two oscillators uj(t) and uk(t) with arbitrary phase
lag can be quantified with the phase locking factor (PLF), the circular variance
of the phase lag between them. Formally it is defined as the amplitude ̺jk ∈ R
of the complex variable

̺jk e
iΨjk =

〈

ei(φj−φk)
〉

, =⇒ 0 6 ̺jk 6 1, (1)

where φj , φk are the instantaneous phase variables of uj and uk. Here the expec-
tation 〈·〉 is taken over time, assuming that phase synchrony is persistent in the
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time interval. Also, e.g., in EEG event related studies, the expectation could be
taken over epochs of repeated stimulations.

Measured signals y(t) often manifest superpositions of various oscillators.
If the PLF is calculated among y, the result will not represent the interaction
between the sources. When mixing fully phase synchronous with asynchronous
sources (cf. example in Fig. 1a), the resulting synchrony will be: (i) observed all
across the measurements and (ii) in general weaker than between the perfectly
locked sources (as can be seen in Fig. 1b).

To illustrate what happens with two phase locked oscillators of the same
subspace when superimposed, let us revisit the example in [6]

Ex. 1. Let uk(t) = Uk(t) cos(φk(t))|k=1,2, Uj(t) > 0 be two oscillators with
a constant phase lag ∆φ = φ1(t) − φ2(t). Consider a superposition yj(t) =
Yj(t) cos(ψj(t)) = aj1u1(t) + aj2u2(t)|j=1,2, where the matrix (ajk) is of full
rank. The phase is

ψj(t) = φ1(t) + arctan

(

aj2U2(t) cos(∆φ)

aj1U1(t) + aj2U2(t) sin(∆φ)

)

,

from which we can find a lower bound to the change of the phase difference1
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The magnitude of the change of ∆ψ is greater than zero if ∆φ 6= 0, U̇j 6= 0,

U̇1/U1 6= U̇2/U2 and det(ajk) 6= 0. As a consequence, the phase lag of linearly
transformed, locked oscillators can be non-constant over time which will reduce
the phase locking factor (Eq. (1)) to a value below one, ̺12 < 1.

The goal is to transform the observations back to the source space, reducing
spurious synchronisation, in order to identify coupled oscillators therein. In [6, 7]
independent component analysis (ICA, cf. [8] and Refs. therein) was employed to
reverse the superposition process before calculating the PLF. ICA, as a specific
approach to the blind source separation problem, tries to infer a multivariate
system u(t) from observations y(t) generated by linear superpositions y(t) =
Mu(t). No explicite knowledge of M is summoned except that it is invertible,
i.e., ∃W T = M−1. Also a rather generic assumption of statistical independence
of the sources u, is utilised. Seemingly general, the second assumptions may be
inappropriate in some cases.

3 ICA, complexity pursuit and phase order

Weak interactions of self-sustained oscillators cause negligible perturbations of
one another’s amplitudes. Though, these can still be correlated if the phase
portraits of the oscillators, as defined by the system parameters, are “similar”.

1We drop explicite time dependence (t) for the sake of brevity.
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As a result, the ICA assumption of statistically independent source signals may
be violated in an ensemble of similar oscillators. The following describes how the
assumptions can be modified. Our discussion starts with the classic formulation
of ICA as minimising the mutual information I between the sources u

I[u] =
∑

j

H [uj ] −H [y] − ln | detW |, (2)

where the entropy, H [y], of the observations is not relevant in the optimisation of
I w.r.t. u or W .

∑

j H [uj] is the sum of the source entropies, and − ln | detW |
a regularising term to be discussed below (see also [9]). Since the overall scaling
of u(t) is not identifiable [8], a normalisation constraint for the columns of the
demixing matrix,

∑

j wT

j wj = 1, can be added without loss of generality.
The source entropy is a complexity measure, its maximum corresponding

to complete randomness (disorder) and its minimum to a highly ordered or
structured signal. Signals occurring in nature typically belong to the second
type. Based on this observation, algorithms using approximations of Kolmogorov
complexity to recover natural signals were devised [9, 10]. For concrete problems,
other measures could be investigated, e.g., any order parameter natural to the
physical system. Instead of minimising the generalised notion of complexity, one
can opt for maximising a specific measure that emphasises one’s desired aspect
of order.

We suggest that order in ensembles of coupled oscillator can be conceived as
organising the multidimensional system into subspaces of oscillators with coupled
dynamics. Explicitely, the assumptions are:

A1 : Oscillators of the same subspace are completely phase locked;
A2 : Between subspaces there is no Phase locking.

To measure A1 and A2 for a system of source oscillators uk, let us define the
following quantity.

Def. 1. The order of a system in terms of phase locked subspaces can be
quantified by

P = −
∑

j,k

̺jk ln ̺jk, with ̺jk as defined in Eq. (1). Thus P > 0.

P optimised w.r.t. the projection W leads to the sources most in agreement
with the assumptions.

The inference of synchronous subspaces based on P gives rise to degenerate
solutions, where several columns of W converge to the same vector, with trivially
synchronous projections. Substituting P , instead of

∑

j H [uj], into Eq. (2) we
get

C = −
∑

j,k

̺jk ln ̺jk − ln | detW |. (3)

The term − ln | detW | basically forces W to be more orthogonal, preventing
the degeneracy. In the sequel its properties are discussed and it is argued to
be more suitable for subspace analysis than the strict orthogonalisation used in
many ICA algorithms.
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3.1 Phase ordering flow near Stiefel-Graßmann manifolds

Recall the definition, cf. [11], here only for square matrices

Def. 2. The Stiefel and Graßmann manifolds, S,G ⊂ Rm×m, are defined such
that its elements W ∈ S ∪ G suffice orthonormality, W

T
W = I, and (i) for

W ∈ S : C(WR) 6= C(W ) or (ii) for W ∈ G : C(W R) = C(W ) for a rotation
matrix R 6= I. The function C : S → R or C : G → R can be, e.g., an associated
cost function.

Remark. For G the cost is invariant of the choice of basis, i.e., the basis can only
be fixed up to arbitrary rotations.

Let us consider the observed measurements y(t) to be pre-whitened,
〈

yyT
〉

= I,
i.e., we discard a-priori all correlations in the data. This can be done by a
projection onto the principal directions and a scaling to unit variance. Whitening
also implies that correlations between sources are determined by the projection
matrix,

〈

uuT
〉

= W
T
W .

ICA algorithms are typically restricted to the Stiefel manifold [11], as a
consequence of which the sources are uncorrelated. This reduces the number of
free parameters for the optimisation. While this is no hindrance in ICA, where
sources are even assumed statistically independent, it may come as a restriction
in subspace analysis, e.g., it implies that the phase shift within the subspace is
π
2 . Not strictly enforcing this constraint opens the possibility for some sources
to be correlated. The algorithm may then converge to the true source, and the
postulated phase locking structure.

Under certain conditions, the last term in Eq. (3) evaluates how close W

is to the Stiefel-Graßmann manifold. This is seen by comparing it to the term
‖W TW −I‖2

F , which is an intuitive measure of how close W is to orthogonality.

Lemma 1. For a matrix W ∈ Rm×m with normalised columns, ∀j : ‖wj‖2 = 1,
it holds that − ln | detW | > 0.

This follows if the determinant is regarded as the volume of an m dimensional
parallelepiped of side length one (Hadamard’s inequality).

Lemma 2. For a square matrix W near the Stiefel-Graßmann manifold, i.e.,

‖W TW − I‖F ≪ 1, the two quantities ‖W TW − I‖2
F and − ln | detW | have

the same minimisers for which they obtain zero.

Proof. Let Ξ = W
T
W . Using some properties of the determinant function we

have ln | detW | = 1
2 ln | detΞ| = 1

2 tr(lnΞ). The (1,1)-Padé approximation of
the logarithm, which holds for ‖Ξ − I‖ ≪ 1, can be applied: lnΞ ≈ −2(I −
Ξ)(I + Ξ)−1. So we have

− ln | detW | ≈ tr((I − Ξ)(I + Ξ)−1) > 0.

The lower bound of zero again follows from the restriction of normalised column
vectors, so that the diagonal elements of Ξ are ones. Hence, − ln | detW | is
minimised by Ξ = I as is ‖Ξ− I‖2

F = tr((Ξ − I)(Ξ− I)T).
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Fig. 1: (a) Oscilla-
tors u with distinct
amplitudes, grouped
in synchronous sub-
spaces. PLFs are
depicted as a Hinton
diagram. (P = 0.08)
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y3

y4

y1 y2 y3 y4

(b) Mixtures y(t) with
an overall spuriously
phase locking. (P =
3.66)

Remark. This gives us a simple intuition of − ln | detW | in the vicinity of Stiefel-
Graßmann manifold as a force dragging a departed matrix back towards the
manifold. Yet, it does not strictly enforce orthogonality, leaving the possibility
for some correlations among members of a subspace. Its is also possible to
introduce a hyperparameter λ to the cost C = P − λ ln | det |W |, to control the
trade-off between the two terms. We can also use ‖W TW − I‖F which is not
restricted to square matrices, a necessary step if less sources than observations
are to be extracted.

From Ex. 1 we generalise the following formal statement.

Conjecture 1. If any two oscillators uj and uk belonging to the same phase

locked subspace have a phase lag ∆φjk > 0, non-constant amplitude dynamics,

U̇j 6= 0 and U̇j/Uj 6= U̇k/Uk, then the corresponding projection is near the Stiefel

manifold and thus the rotation can be fixed.

3.2 Gradient based optimisation

In cases where the sources agree with A1 and A2 they can be extracted by
the gradient flow dW

dτ
= −η dC

dW
∝ λW−T − ∂P

∂W
. The rotation can be fixed if

conjecture 1 holds. The gradient of P w.r.t. the elements of W is

∂P

∂wij

= −4

m
∑

k=1

(ln ̺jk + 1)

〈

sin(Ψjk − ∆φjk)
Yi sin(ψi − φj)

Uj

〉

. (4)

For example, the four oscillators depicted in Fig. 1a fulfilling the assumptions
(P = 0.08), but are correlated in the subspace making it more difficult for ICA.
If superimposed, this structure is lost (P = 3.66), as is the temporal structure
of the oscillator dynamics, Fig. 1b. Based on assumptions A1 and A2, and
with the help of the gradient flow above, the minimum phase entropy state can
be recovered, together with the correct sources up to permutation, sign and
amplitude scaling. Since the cost C is a nonlinear function of W , the algorithm
is sensitive to local minima, and to the choice of the hyperparameters η and λ.
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4 Discussion

Two methods to cluster measurements directly into synchronous subspaces with-
out reference to the superposition problem were developed recently [12, 13]. The
first is a meanfield approach derived from Kuramoto’s equations [3]. The second
can be interpreted as spectral clustering with the phase synchronisation matrix
(̺jk)j,k=1..m as a similarity measure. Our quantity P can be seen as a global
measure of how structured this matrix is in the sense of phase locked subspaces.
In a toy example, it lead to the recovery of the original sources. It is important
to realise that the phase locking factor is evaluated in the source space, among
the projected signals, not between measurements.

We expect that the extraction of phase synchronous subspaces by linear pro-
jections with the assumptions A1&A2 may be of relevance to problems in neu-
roscience involving EEG/MEG or local field potential measurements if commu-
nication between neural units is under investigation. In that case real projection
matrices as opposed to complex ones can easily be interpreted as field patterns.

The segregation of subspaces by assumptions A1&A2 focus on synchronisa-
tion properties only. Other criterion based on amplitude statistics have been
proposed to foster the projections into subspaces [14].
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