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Abstract. A common approach for classifying shock graphs is to use
a dissimilarity measure on graphs and a distance based classifier. In this
paper, we propose the use of kernel functions for data mining problems on
shock graphs. The first contribution of the paper is to extend the class of
graph kernel by proposing kernels based on bag of paths. Then, we propose
a methodology for using these kernels for shock graphs retrieval. Our
experimental results show that our approach is very competitive compared
to graph matching approaches and is rather robust.

1 Introduction

Object recognition is still a difficult and challenging problem. For solving such
problem, several cues are integrated, which give statistical and structural infor-
mation about the object. In this paper we will focus on an important cue, which
is the object shape. Like many real-world data, as texts or molecular structures,
shapes can be represented as graphs. Graphs are obtained after an appropriate
skeletonization of the shape [4]. Applying high-level algorithms for classification
or clustering suppose the definition of similarity on graphs.

While addressing the problem of shape matching, several approaches have
been used to define similarity on graphs [1], like edit-distance [9] or mazimum
common subgraph. We propose to address this problem of measuring shape
similarity through the theory of positive definite kernel. Using such theory, it
becomes possible to define a kernel function that acts as an inner product on
the graph space.

In this paper, we first show that many graph-based kernels are built upon
two ingredients : path generation and set of paths similarity measures. After,
having highlighted this point, we propose other graph-based kernels that differ in
how the similarity between set of paths is computed. Then we use these kernels
for addressing a problem of shape retrieval, and we show that this approach
compares favorably to current approach while opening interesting perspectives
for statistical and structural shape classification.

IThis work was supported by grants from the IST program of the European Community
under the PASCAL Network of excellence, IST-2002-506778.
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2 Bag-of-paths based graph kernel

Let us introduce the notation that will be used throughout the paper. Define V'
as a finite set of vertices and F C V x V a set of edges. A graph G is defined
as G = (V, E). For a labeled graph, a labeling function is also defined. This
function [ : VU E — X assigns a label [(z) to any vertices or edges .

Here, all steps concerning the shape transformation in a graph have been
borrowed from the literature. Shape skeletonization has been performed by
means of Dimitrov et al. algorithm [4] while the skeleton to graph transformation
we applied is rather similar to the one proposed by Di Ruberto [7].

2.1 Set of paths

A path h of length n on a graph G can be defined by a finite-length sequence
of vertices as h = (vy, -+ ,v,) with Vi € [1,n — 1], (v;,vi+1) € E. So h can be
defined as a subgraph of G and can result from the transversal graph with a
random walk or by any other methods such as collecting all the paths between
any two pairs of vertices. We can then represent G with a set of m paths :
{hh h27 ey hm}

This new representation seems to be less informative since some structural
information are lost, however, the advantage is that similarity between graphs
can be based on the similarity between these bags of paths.

The similarity between paths is defined with the kernel function Ky (h,h’).
Usually, K1,(h,h') = 0 if their lengths are different and otherwise we have :

n

K (h, 1) = Ko (U(01), 100)) [ [ Ke(Uvier, 00), 1(vi_y, v]) ) (Uv), () (1)

=2

This latter equation suggests that the kernel on path K needs the definition of
kernels on vertex label K, and edge label K.. For this work, when considering
kernel on paths, we will use equation 1.

In this work, we propose to represent a graph according to the set of shortest
paths between each vertex instead of using all paths obtained by random walks.
The problem of finding the shortest path between two vertices is already a clas-
sical result in the domain of graph theory. Throughout this paper, we will use
the Dijsktra’s algorithm.

Since all paths are preprocessed, it becomes easy to discard some paths from
the set to reduce the computational time. For instance, we can handle the
maximal path length easily. The last advantage is that a set of paths is of finite
cardinality and thus, no convergence problem appears. Furthermore, considering
shortest paths between vertices naturally prevents from tottering phenomenom.

2.2 Merging path similarity measures

One possible approach [11] for building a kernel on sets is to compute a similarity
score between elements of each set according to a so-called minor kernel and then
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is to merge the resulting scores into a higher level similarity score that defines
the inner product between the two sets.

The graph kernel of Kashima et al.[6] fits into this bag-of-paths kernel frame-
work. In fact, for this kernel each graph is represented by a set of paths (of
possibly infinite dimension) obtained through a random walk on the graph.

The graph kernel is obtained by merging all pair of paths similarity mea-
sures into a single score, using a weighted averaged approach : K(G1,G3) =
Zhl,hzevl*,vg p1(h1)p2(ha) K1 (h1, ha), where p; and ps are some probability dis-
tributions on the set of finite-length sequences of vertices V* and V5. Actually,
only paths have positive probabilities under p; and p, and these probabilities
distributions are defined according to the path generation on the graph.

In the following paragraph, we look for different methods to merge path
similarity measures. Supposing that each graph G, G5 has been transformed
into a set of paths respectively P; and P,. A first easy way for obtaining a graph
kernel would be the mean average kernel :

K(G,G) =K(PLP) = =+ S S Kilhohy) ()

ith; €Py j:h; €EP;
where N7 and N> are respectively the cardinality of the sets P; and P,. This
kernel is very simple but has the disadvantage of using all pairs of similarity
between paths. Hence, a large number of pairs of paths with low similarity
measures can “hide” a large similarity between two paths. For addressing such
problem, it is possible to consider a matching kernel [11] :

K(G1,Ga) = K(P1, P3) = Z[K(Py, P2) + K(Py, Py)] (3)

N =

with K(Pl, Py) = ﬁ Zz‘:hiePl max ., cp, K1 (hi, hj). This kernel aims at match-
ing each path of P; with a path of P, which is an interesting approach but leads
to a non positive-definite kernel. Although such non-positive kernel can be used
for learning, we propose here a positive-definite approximation of this matching
kernel. maxj.p;cp, K1 (hi, hj) can be approximate with Zj:hjePZ Kg, (hi, hj)

5]. Indeed, the kernel Ky, (h1,h2) = exp —M is positive definite for
[ L 20

all ¢ > 0. dp is the distance induced by the kernel K. Our positive-definite
matching kernel is then :

N 1 1
K(P,Py) = W@ Z Z K, (hi, hy) (4)

ith;€Py j:h;€P>

With this approximation, we include in the kernel values all the similarity mea-
sures between pairs of paths, but with an exponentially decreasing influence as
the distance dj, between the two paths increases. Hence, the contribution of the
most matching path is still large compared to other paths.

Another approach is based on the kernel on sets described by Desobry et al
[3]. Two graphs can be considered as similar if their respective sets of paths
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Fig. 1: Query result with the Rudger tools dataset. First line images represent
the query and then we have from up to bottom the most similar objects according
to a path level-set kernel.

occupy the same part of the space of finite-length sequences. According to
Desobry and Davy, this boils down to measure the similarity of the two sets of
path P; and P» by comparing the support of the probability distribution of each
set of paths. Since, we have to deal with estimating such support, Desobry et
al. propose to use a one-class SVM. The estimation of the distribution support
is obtained as a solution of the optimization problem :

1, 1
Join SR+ Ei:maX(O,b — flx:) = b

where H is the reproducing kernel Hilbert space induced by the kernel on path
Ky, which we suppose is so that Kr(h,h) = 1, v € [0,1] is a regularization
parameter that is directly related to a given level-set of the distribution support
[8]. The distribution support of each set of paths S; and Sy of are obtained
by applying the one-class svim to each set and the contour of S; and Sy are
respectively : fp, (h) =3, ;' K (hi,h) —bp, and fp,(h) =3 af* Kp(hj, h) -
bp,. Then, we have defined the inner product between supports and thus between
the graphs generating the paths as :

K(G1,Ga) = K(Py, Py) = (bpy,be) - > > o a*Ki(hihy)  (5)
ith;, €Py j:h]‘GPQ

According to the property of positive definite kernels, the resulting kernel is
positive definite.

3 Application to Shock Graphs Mining

We have tested our graph kernel approach on a shape retrieval problem. We
compare our approach to state-of-the art algorithm for graph matching [10, 2, 9]
on the Rudgers tool database. This database contains 25 objects separated in
8 different classes five of which can be categorized as “tool” whereas the three
other are biological shapes.

The shape retrieval problem is the following : each of the 25 objects has
been used as a shape query and for each query, we rank the 24 other shapes by
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decreasing similarity to the query shape (the similarity being defined according
to the distance induced by the graph kernel). For an ideal similarity measure,
supposing that the query shape belongs to a class with n elements, the n — 1
first ranked shapes should belong to the same class of the query.

We have used the distance to the center of the mass and the distance to the
nearest shape edge as node labels and only the normalized length as edge label.
All the features have been normalized and belonging to the interval [0, 1]. Several
parameters have to be fixed for our similarity measure which are the minor kernel
for edges and vertices. In all our experiment, we have used a gaussian kernel for
all these kernels. Thus, for this comparison, we have fixed the gaussian kernel
widths ¢ to 0.1 after having perform a complete test to choose the optimal
parameter. For the parameter of the gaussian in the matching kernel we have
used the same value.

When considering the best ranked shapes, Sebastian et al. [9] and Demirci
et al. [2] respectively reported 1 and 1 mismatching retrieved shapes, which
corresponds to 96% and 96% recognition rate. Figure 1 reports our results for
different kernels and for different lengths of paths used for processing the kernel.

When path length is equal 0, the max matching kernel performs very well
with a recognition performance of 96% whereas other path-based kernel gives
performances lower than 90%. As the considered path length increases, the
recognition rate increases then decreases when a given path length is reached.
Kernels for path length equal to 0 have been computed considering only node
similarities. We can conclude that the path length can bring discriminant infor-
mations on the shape. For this problem, it seems that a path length of 2 or 3
seems to be a good compromise.

We can also note that, although the labels used for nodes and edges are
rather simple, the path level-set based kernel (eq. 5) and the max matching
kernel (eq.3) are able to retrieve a correct shape on all the queries. For this
experiment, the path level-set kernel seems to be robust to the path length since
it provides perfect recognition rate for a path length from 1 to 4. Figure 1 clearly
shows that the matching kernel (eq. 4) and the mean kernel (eq. 2) performs

359



ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

poorly compared to the max matching kernel that they approximated. This lack
of performance may be due to bad kernel parameters. It illustrates the price that
has to be paid for having a positive definite approximation of a kernel.

Figure 1 gives an example of shape retrieval for the path level-set kernel for
a maximal path length of 2. We can see that the best matches are all correct
but several incorrect matches have been obtained for the second best matches.
These errors are essentially due to the incapacity to make the difference between
the class “brush” and “screwdriver”. A rationale for this may be that labels
used for nodes and edges are not discriminating enough for these two classes.

4 Conclusions

In this paper, we have shown that using graph kernels can be a good alternative
to graph matching algorithm for measure graph similarity. At first, we have
shown that many graph kernels can be considered as a bag of paths kernel and
from this observation, we have provided another graph kernel. We then used
this kernel for measuring shape similarities.

Results prove that this approach is very promising since owing to graph kernel
and the kernel on paths, the similarity measure can be enriched with statistical
information about the object. For instance, vertices can be labeled by local
histograms or by texture features extracted locally in a window centered on a
vertex of the skeleton.
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