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Abstract. Natural cortical neurons form functional networks through

a complex set of developmental steps. A key process in early develop-

ment is the transition of the spontaneous network dynamics from slow

synchronous activity to a mature firing profile with complex high-order

patterns of spikes and bursts. In the present modeling study we investi-

gate the required properties of the network to initialize this transition by

the shift of the chloride reversal potential, which switches the effect of the

GABA synapses from depolarizing to hyperpolarizing. The simulated net-

works are generated by a statistical first-order description of parameters

for the neuron model and the network architecture.

1 Introduction

When observing the maturation process of neocortical networks, different stages
with different dynamic behavior can be identified. During an early, experience-
independent phase of network development, the immature networks generate
slow spontaneous rhythmic activity, that stabilizes the network and prepares it
for the later information processing with structural and functional consequences
[1, 2, 3, 4]. The transition from this synchronous to working phase starts if
sensory signals input into the network [5], the synchronous activity dissolves
and the mature firing activity start with complex high-order patterns of spikes
and bursts [4]. The specific mechanism behind this is unclear, but it is known
that in this time period, the effect of the GABA neurotransmitter changes from
depolarizing to hyperpolarizing. This ”GABA shift” is due to the change of the
chloride reversal potential, caused by the developmental decrease of the intracel-
lular chloride concentration [6]. In this modeling study we discuss the question
if this transition from one dynamical behavior into another can be controlled
by only one parameter. With a biologically realistic model of a dissociated net-
work with neocortical neurons under standard culture conditions generated by
statistic parameters, the network properties and dynamics are analyzed.
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2 Methods

2.1 Neuron model

We use the neuron model by Izhikevich [7, 8], which reduces the biophysically
accurate Hodgkin-Huxley model to a two-dimensional system of ordinary differ-
ential equations:

v̇ = 0.04v2 + 5v + 140− u− Isyn + Iintr, (1)

u̇ = a (bv − u) . (2)

Where v is the membrane potential, u is a recovery variable and a, b, c, d are the
dimensionless model parameters, which allow to tune the model to different dy-
namics (see [7] for details). The intrinsic current Iintr is a stochastic component
which drives the spontaneous activity of the neurons. If v reaches a threshold of
30 mV, a spike is generated and all variables are reset:

v ← c (3)

u ← u + d (4)

We use two different types of neurons: excitatory (glutamaergic) neurons and
inhibitory (GABAergic) neurons. According to the simulations in [8], the exci-
tatory neurons are simulated with parameters (a, b) = (0.02, 0.2) and (c, d) =
(−65, 8) + (15,−6) r2, where r is uniformly distributed on the interval [0, 1].
Its behavior is between regular spiking (RS, r = 0) and intrinsically bursting
(IB) and chattering (CH, r = 1). The square of r, (r2), biases the distribu-
tion towards the RS cells. The parameters of the inhibitory neurons are set to
(a, b) = (0.02, 0.25) + (0.08,−0.05) r and (c, d) = (−65, 2). The resulting behav-
ior is between low-threshold spiking (LTS, r = 0) and fast spiking (FS, r = 1).
The standard integration time step is 0.1 ms.

2.2 Synapse Model

To implement depression and facilitation, we use a dynamic synapse model [8],
in a modified mathematical formulation, which is independent from the time
step:

Ṙ = (1−R)/D, (5)

ẇ = (U − w)/F. (6)

with the parameters U , F and D. On each spike, which is received by the
postsynaptic neuron, after the transmission delay, the variables R and w will be
updated:

R ← R + Rw, (7)

w ← w + U(1− w). (8)
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The parameters depend on the type of presynaptic neuron: For excitatory neu-
rons the parameters are set to U = 0.5, F = 1000 and D = 800 and for inhibitory
neurons are set to U = 0.2, F = 20 and D = 700. In contrast to [8], the de-
pression R acts as gating variable. If R < U , the synapse is affected by the
depression, no spike will be transmitted, and the (R,w) system (eq. 7, 8) is
not updated, which assumes, that a minimum of available transmitter of U is
required to transmit a spike.

The synaptic current of the neuron j is:

Isyn = gAMPA (v − 0)

+gNMDA

(

(v + 80) /60

1 + (v + 80) /60

)

(v − 0)

+gGABAa (v − eGABAa)

+gGABAb (v − eGABAb) (9)

The reversal potential of the GABAergic synapses are shifted from eGABAa =
−30mV and eGABAb = −40mV to eGABAa = −70mV and eGABAb = −90mV
during the simulation (see Results), thus switching the synaptic effects from
excitatory to inhibitory.

The conductance changes by first-order linear kinetics. ġk = gk/τk with time
constants τk = 5, 150, 6 and 150 ms for the simulated AMPA, NMDA, GABAa
and GABAb receptors, respectively [8]. The rising time of currents is typical
short and neglected. The transmission delay depends on the Euclidean distance
of neurons (velocity 0.5 m/s). All synapses have an additionally latency of 0.5
ms [9].

If a spike is received by the postsynaptic neuron j, the conductances are
updated depending on the type of presynaptic neuron:

gAMPA ← gAMPA + rAMNM · cij , (10)

gNMDA ← gNMDA + (1− rAMNM ) · cij , (11)

gGABAa ← gGABAa + rgaba · cij , (12)

gGABAb ← gGABAb + (1− rgaba) · cij , (13)

where cij is the synaptic weight, rAMNM = 0.9 is the relation of AMPA and
NMDA channels and rgaba = 0.9 is the relation of GABAa and GABAb chan-
nels. The synaptic weights cij are set in respect to source and destination neuron
(see table 3).

2.3 Neuron placement and connections

A network section of nglut = 400 glutamatergic neurons and nGABA = 100
GABAergic neurons was assembled, arranged on the planar area of 1 x 1 mm2,
as a simple representation of a standard neocortical culture. The neurons were
connected by a set of statistical connection methods [10, 11] in such a way
that each neuron has a local cluster and a displaced cluster. The local cluster
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connects the cell only in the immediate neighborhood. The probability to con-
nect a cell a on position xa with a cell b on position xb directly depends on
the Euclidean distance dab = |xa − xb| and is modulated by Gaussian function

pl
ab = pme−dab/σ2

local . A displaced cluster connect neurons in the neighborhood
of the cluster center. An axon grows from the source neuron in a random di-
rection y. Anywhere in the network area (distance of ldisp form source neuron)
a local probability map in the same way as on pure local connections is built:

pl
a,b = pme−d̃a,b/σ2

disp but distances are defined from the displaced cluster center:

d̃a,b = |(xa + ldisp ∗ y)− xb|. The cluster center approximates the branching of
axons.

The parameters are specified individually for each combination of source and
destination type of neurons (see table 3 in results).

3 Experiments and Results

We generate a large set of networks by different statistical parameter combina-
tions in the possible range and run simulations on a linux-cluster (42 nodes).
For each specific parameter combination five instances of the network are real-
ized to determine the variations by the stochastic component of generation and
simulation. A time window of 5 seconds (model time) is analyzed before and
after the GABA switch.

One of the first results is, that synchronous activity occurs in a wide range
of parameters, which confirms experimental physiological investigations [3, 12]
and other modeling studies [13, 14] that have shown that network synchronous
oscillatory activity does not necessarily result from the activity of pacemaker
cells. For the emergence a synchronized oscillatory activity in a purely excitatory
network only two conditions have to be fulfilled [15]: (i) the network needs
an adequate connectivity and (ii) a damping element, as the depression of the
dynamical synapses (see section 2.2).

Because the synchronous activity occurs in a wide range of connectivity,
young networks can start a slow synchronous activity by a few connections and
evolve very specific connections by activity driven self organizing mechanisms
(e.g. STDP) without dramatic changes in dynamics over the whole synchronous
stage, as a homeostatic behavior. During this time, the inter burst interval
falls with rising connectivity [1]. Since here only the network at the end of the
synchronous stage is of interest, we focus on networks with a high connectivity
(see table 3). The large GABAergic neurons have a higher number of connections
and dominate the dynamics in the synchronous stage [3].

To get a realistic behavior of the network after the transition to working
stage, a fine tuning of the balance of inhibitory and excitatory synaptic weights
is necessary. Resulting parameters for the simulation are listed in table 3. The
realized networks based on these parameters produce in the synchronous phase
network a burst with a frequency of about 2 Hz, which is plausible from a bio-
logical point of view [1]. In the working phase they show a complex pattern with
some low frequent and weak network bursts. Figure 1 shows a typical activity
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glu → glu glu → GA GA → glu GA → GA
σlocal/µm 75 150 150 150
σdisp/µm 37.5 37.5 75 75
cij 0.025 0.04 0.04 0.02

Table 1: Size of connection cluster and initialization value of synaptic weights
between glutamatergic neurons (glu) and GABAergic neurons (GA).

pattern from the realized simulations. The basic properties [16] of the resulting
networks are analyzed: mean output degree (number of output connections) 28
(glut.), 70 (GABA) and 36 (all); mean cluster coefficient is 0.36 (glut.), 0.19
(GABA) and 0.32 (all); average path length 2.2. This properties are typical of
well connected networks with local and long range connections.
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Fig. 1: A typical activity pattern of a network with parameters of table 3.
Reversal potential switch at 5000 ms; neuron #: 1 to 400 glutamergic, 401 to
500 GABAergic.

4 Discussion

Artificial neuronal networks with some hundred to some thousands spiking neu-
rons can be simulated effectively on parallel computers [17, 8]. For real engineer-
ing applications of spiking neural networks, there is often a lack of knowledge
in the set-up of network architecture, neuron connections and synaptic weights
and in the parameter adjustments in different scaled networks, which is the
motivation to look closer to the maturation process of biological networks.
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We have shown by simulation experiments, that the switching of only one
parameter is sufficient for the transition from the synchronous to the working
stage during the network development. However, a fine tuning of all other pa-
rameters is necessary and of critical importance. In real biological networks, this
fine tuning is the result of self organizing mechanisms, which we will focus in
further studies.
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