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Abstract. One-class support vector machines (1-SVMs) estimate the
level set of the underlying density observed data. Aside the kernel selection
issue, one difficulty concerns the choice of the ’level’ parameter. In this
paper, following the work by Hastie et. al (2004), we derive the entire
regularization path for ν-1-SVMs. Since this regularization path is efficient
for building different level sets estimate, we have empirically compared
such approach to state of the art approach based on alpha seeding and we
show that regularization path is far more efficient.

1 Introduction

One-class support vector machines (1-SVM) [1] are used in a variety of applica-
tions, ranging from novelty detection and abrupt change detection to clustering.
Though less attention has been paid to 1-SVMs than to their 2-class and mul-
ticlass counterparts, they have many strong theoretical and practical properties
which make them extremely useful in applications.

The general problem addressed by 1-SVMs is fully exposed in [1, chapter 8],
and we do not recall it here for the sake of conciseness. Let X = {x1, . . . ,xm}
be a set of m in X , assumed to be distributed i.i.d. according to a pdf p(x).
Considering the so-called ν-1-SVM framework, the problem to be solved is to
estimate a level set Sγ = {x ∈ X |p(x) ≥ γ} from data by finding a function fλ

in a Reproducing Kernel Hilbert Space (RKHS) H of kernel k
(
·, ·

)
, and an offset

bλ ∈ R such that

Minimize
f,b,{ξi}

m∑

i=1

ξi − λb +
λ

2
‖f(·)‖2

H

with, for all i = 1, . . . ,m f(xi) ≥ b − ξi and ξi ≥ 0

(1)

for any λ in (0,m), and letting Ŝλ
X = {x ∈ X |fλ(x) − bλ ≥ 0}. It can be

shown [1] that, asymptotically, 1 − λ/m is the probability mass enclosed inside
the level set Sγ , yielding a relation between λ and γ. In practice, tuning λ is
even more intuitive that tuning γ. For example, λ = 0.2 × m means that at
most (and asymptotically exactly) 20% of the vectors in X are outliers. In the
following, we denote by (fλ(x),bλ) the minimizer of (1), owing to the equivalence
between γ and λ.

From the representer theorem, the solution fλ(·) belongs to the subspace of H
spanned by the functions {k

(
xi, ·

)
, i = 1, . . . ,m}, that is fλ(·) = 1

λ

∑m
i=1 αλ

i k
(
xi, ·

)
,

where the coefficient 1/λ appears for reasons that will be made clearer in the
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following. The data in X may be in one of the three sets: 1) non-support vectors

Lλ = {i ∈ [1,m] : fλ(xi) − bλ > 0 and αλ
i = 0}; 2) margin support vectors

Eλ = {i ∈ [1,m] : fλ(xi)− bλ = 0 and 0 < αλ
i < 1} and 3) non-margin support

vectors or outliers Rλ = {i ∈ [1,m] : fλ(xi) − bλ < 0 and αλ
i = 1}.

This paper concerns problems where the 1-SVM problem (1) should be solved
for various values of λ. For example, in novelty detection, selecting the right
value for λ may require to cross-validate, that is, solve (1) for several λ’s.In
density estimation by using the level sets [2], problem (1) should be solved
for any λ in [0,m]. In multiclass classification with a rejection class, several 1-
SVMs may be used, with their λ’s tuned according to a given criterion. This also
requires to solve problem (1) for several λ’s for each class. The main contribution
of this paper is the derivation of the entire regularization path for ν-1-SVMs,
building on the work by Hastie et al. [3].

This paper is organised as follows: in Section 2, we show that the complete
regularization path can be computed using simple update rules, following the
approach in [3]. Section 3 presents some numerical experiments that illustrates
the piecewise linear behaviour of regularization path. Furthermore, we expose
some results showing that regularization path method is more efficient than
alpha seeding for computing different One-Class SVM solution. Conclusions
and future work directions are given in Section 4.

2 Derivation of the entire regularization path

In this section, we derive the entire regularization path for ν-1-SVM. This re-
quires to coma back to the dual optimization problem of problem (1). We
suppose in the following that the kernel is such that for any x, k

(
x,x

)
= 1.

2.1 Dual optimization problem

In order to derive the entire regularization path for 1-SVMs, one writes the
Lagrangian for Eq. (1) for some λ, which provides the dual to be solved with
numerical optimization technique w.r.t. the αi’s:

Minimize
α1,...,αm

1

2λ

m∑

i=1

m∑

j=1

αiαjk
(
xi,xj

)
(2)

with

m∑

i=1

αi = λ and 0 ≤ αi ≤ 1 for all i = 1, . . . ,m (3)

Once this problem is solved for some λ yielding the solution denoted {αλ
1 , . . . , αλ

m},
the offset bλ is computed from Karush-Kuhn-Tucker conditions.

2.2 Initialization of the path

In order to solve this problem for every value of λ, we assume that the problem
has been solved for some initial value λ0. It appears that initializing at λ0 ≈ m
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with λ0 < m requires few computations. First, we note that for λ0 = m, the only
admissible solution is the Parzen density estimator given by αm

1 = . . . = αm
m = 1

and bm =
∑m

i,j=1 αm
i αm

j k
(
xi,xj

)
thus all the data belong to Rm. The elbow

set Em is empty, and we shall see that we cannot start from this situation in
practice. Second, set λ0 = m − ∆λ where ∆λ > 0 and ∆λ ≪ 1. Thus, from
condition (3), at least one datum (with index k) is such that αλ0 < 1. Let us
assume for instance that ∆λ is small enough, and that the datum are positioned
in such a way that this element is unique. Then, problem (2) becomes that of
minimizing w.r.t k

1

2λ

m∑

i=1

m∑

j=1

k
(
xi,xj

)
−

∆λ

λ

m∑

i=1

k
(
xi,xk

)
+

∆λ2

λ
(4)

because αi = 1 (i 6= k), while αk = 1−∆λ. Changing k does not change the first
and third terms in (4), but it changes the second term which equals ∆λ

λ
fm(xk).

Thus, the element xk ∈ X with k ∈ Em as soon as ∆λ > 0 is the one such that
fm(xk) = 〈k

(
xk, ·

)
, fm(·)〉H is maximum (this is the one closest to the barycenter

fm(·) in H). With probability zero, it may happen that for any ∆λ > 0, several
xk’s have the same value for fm(xk), meaning that several k’s belong to Em. In
that case, a QP optimization procedure should be implemented over Em so as
to compute the αλ0

k ’s.

2.3 Running down the path

When running down along the path, it occurs that the indexes of data xi change
from one of the sets Lλ, Rλ, Eλ to another. The values of λ that correspond
to at least one such change are denoted λℓ in the following, with λℓ > λℓ+1.
Moreover, for any value of λ, denote gλ(x) = 1

λ

∑m
i=1 αλ

i k
(
xi,x

)
− bλ =

1
λ

( ∑m
i=1 αλ

i k
(
xi,x

)
− αλ

0

)
with αλ

0 = λbλ.

2.3.1 Computing αλ
i ’s for λ ∈ [λℓ+1, λℓ+1]

Let λ be such that λℓ ≥ λ ≥ λℓ+1, and assume Eℓ is nonempty (where Eℓ is a
shorthand for Eλℓ), we have

gλ(x) =
1

λ




∑

i∈Eℓ

(αλ
i − αℓ

i)k
(
x,xi

)
− (αλ

0 − αℓ
0) + λℓg

ℓ(x)



 (5)

Eq.(5) results from applying the same derivation as is [3, Eq. (29)]. Applying
Eq. (5) to all the indexes j in Eℓ yields

∑

i∈Eℓ

(αλ
i − αℓ

i)k
(
xk,xi

)
− (αλ

0 − αℓ
0) = 0 (6)

because gλ(xk) = gℓ(xk) = 0 for all k ∈ Eℓ. Eq.(6) being verified for all k ∈ Eℓ,
the αλ

i can be computed by solving a linear system, and we have

αλ
i = αℓ

i − (λℓ − λ)βℓ
i for i = 0, . . . ,m (7)
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where βℓ
i is component #i of vector βℓ defined as

βℓ =
[
Aℓ

]−1
c where Aℓ =

[
KEℓ −1m

1T
m 0

]
and c = [0T

m 1]T (8)

In Eq. (8), KEℓ is the kernel matrix of the xi’s for i ∈ Eℓ. From Eq.(7), we see
that αλ

i for i ∈ Eℓ evolve linearly. Of course, the remaining Lagrange multipliers
αλ

i , i ∈ Lℓ ∪ Rℓ do not evolve. Eq.’s (7)- (8) enable to compute fλ(·) − bλ for
any value of λ such that λℓ ≥ λ ≥ λℓ+1.

2.3.2 Finding the boundaries λℓ

When starting from λ0 and running down the path, boundaries are found recur-
sively. Assume boundary λℓ has been found and λℓ ≥ λ. The next boundary
λℓ+1 is met whenever a change occurs in Eℓ, Lℓ to Rℓ. This happens when

1. one of the αi, i ∈ Eℓ reaches 0 or 1. For each i ∈ Eℓ, the values that lead

to such situations are λ =
1−αℓ

i

βℓ

i

+ λℓ and λ = −
αℓ

i

βℓ

i

+ λℓ

2. one of the xi, i ∈ Lℓ ∪ Rℓ reaches gλ(xi) = 0. This occurs whenever

λ = λℓ

[
1 − gℓ(xi)∑

j∈Eℓ

βℓ
jk

(
xi,xj

)
]

Thus, the next boundary λℓ+1 is the largest λ that verifies one of the above
conditions.

2.3.3 On the emptiness of Eℓ

It has been shown that for λ = m, the elbow set Eλ may be empty, that is,
gλ(xi) 6= 0 for all i = 1, . . . ,m . This can also (and only) happen whenever λ
is any integer smaller than m, because of condition 3, and because the αλ

i ’s with
indexes in Lλ and Rλ are 0 and 1 respectively. In this case, since we are in the
same situation than the one when λ = m, we rely on an the initialization step
(see section 2.2) in order to figure out the next example xi to be integrated in
the elbow set.

3 Experiments

3.1 Illustration on toy problem

Firstly, we want to illustrate the result of a OC-SVM regularization path on a
simple toy problem. The data we used are samples from a gaussian distribution
and we have run our regularization path algorithm using a gaussian kernel.
Results are depicted in Figure 1. The left part of the figure shows the evolution
of the Lagrangian multipliers α with respect to λ. The piecewise linear behaviour
of the α is clearly highlighted. The right part depicts four different level-set
estimation of the gaussian distribution that has generated the samples.
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Fig. 1: Illustration of the regularization path of a One-Class SVM on a gaussian
toy problem. (left) The entire piecewise linear paths of αi with respects to λ.
(right) Examples of level sets estimations for the same dataset

3.2 Comparing regularization path and alpha seeding

As we have stated in the introduction, there exists several problems which in-
volves One-Class SVM and which may need an efficient model selection with
respects to λ. For instance, novelty or change detection algorithms based on
One-Class SVM [4, 5] need the tuning of the hyperparameter in order to achieve
good performance.

Another example would be the problem of estimating a density estimation
through the estimation of several level sets. For such problem, the need of effi-
cient way of computing several Sγ is clear. In this paragraph, we aim at empiri-
cally proving that the regularization path algorithm we propose is very efficient
even compared to a warm-restart approach [6]. Remember that a warm-restart
approach consists of using the Lagrangian multipliers obtained for a previous
value of λ for initializing the QP problem with a new value of λ. DeCoste et
al. [6] has proven that such approach allows to considerably speed-up a model
selection procedure.

Hence, for several binary classification datasets from the UCI repository, we
have compared the computational cost of obtaining different level-sets for each
class using alpha seeding approach and regularization path. 19 level sets have
been estimated for γ = {0.05, 0.10, · · · , 0.90, 0.95}. For each dataset, 90% of the
examples has been randomly drawn and used for evaluating the computational
time. the procedure has been repeated 10 times. The kernel that has been used

for the experiment is a gaussian kernel k(x, y) = exp(−‖x−y‖2

2σ2 ) with different
values of σ. The computation has been performed on a Pentium D 3GHz and
1 Gb of RAM. All the code has been written in Matlab and the One-Class
SVM that has been used is available on authors website. Results show that
regularization path is more efficient than alpha seeding in most of the cases we
analyse. The speed-up gain (which order varies between 0.8 and 25) depends
on the kernel and seems to be smaller for large-scale datasets. Note however
that the regularization path has provided more level sets than the alpha seeding
approach. On the average, the number of boundaries generating a level-set is of
the order of twice the number of examples.
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Table 1: Comparing computational time in seconds of alpha seeding and a reg-
ularization path approach for computing several level sets

Datasets # examples σ Alpha Seeding Reg. Path

credit 653 1 18.1 0.7
5 21.4 3.8
10 15.8 4.4

pima 768 1 54.3 0.8
5 39.8 20.7
10 25.5 11.2

yeast-cyt 1484 1 42.9 49.42
5 42.6 51.87
10 42.5 38.9

spamdata 4601 1 18220 7460
5 2265 1446
10 1114 1039

4 Conclusion

This paper proposes the derivation of the entire regularization path of the One-
Class SVM algorithm according to a parameter λ. This algorithm is able to
provide in a efficient way, estimations of different level sets of the probability
density function from which examples have been sampled. By building on the
work of Hastie et al., we have shown that the Lagrangian multipliers of a One-
class SVM vary in piecewise linear way according to parameter. Furthermore,
we have provided experimental evidence of the efficiency of regularization path
approach compared to alpha seeding heuristics for computing several OC-SVM
solutions. The perspectives of this work is to analyze the add-on values of such
regularization path approach to different problems such as novelty detection,
change detection or multiclass SVM approach.
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