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Abstract.

We present a generative probabilistic model for the topographic mapping
of tree structured data. The model is formulated as constrained mixture
of hidden Markov tree models. A natural measure of likelihood arises as
a cost function that guides the model fitting. We compare our approach
with an existing neural-based methodology for constructing topographic
maps of directed acyclic graphs. We argue that the probabilistic nature of
our model brings several advantages, such as principled interpretation of
the visualisation plots.

1 Introduction

The Self Organising Map (SOM) [1] has inspired numerous extensions for the to-
pographic organisation of non-vectorial forms of data, such as sequences or trees
[2, 3]. Such approaches attempt to introduce a notion of context that is updated
in an recursive manner and is supposed to represent data items processed until
the current competition step. This is realised with additional feed-back connec-
tions that allow for natural processing of recursive data types. Typical examples
of such models are e.g. merge SOM [4] and SOM for structured data [5].

The heuristic nature of SOM and its extensions inherently brings about cer-
tain limitations. One of the major limitations is the lack of a principled cost
function that quantifies the topographic organisation of the map (although see
developments in e.g. [6]). This introduces difficulties in the comparison of map
formations resulting from different initialisations, parameter settings, or optimi-
sation algorithms.

The second major limitation is the inability of such approaches to deliver a
model-based interpretation of the visualisation result. Clusters may be formed
on the map that indicate some close relationship between the concerned struc-
tured data items, but there is no explanation on what the characteristics of the
cluster are. Of course one can inspect the individual data points to deduce those
relationships once the map has been formed, but reasoning about mapping of
new data items (not used for model fitting) is still quite problematic.

To address those limitations, we introduce a model based approach to con-
structing topographic maps of tree-structured data formulated in a principled
framework of probability theory. Generative probabilistic modelling brings a
number of advantages, e.g. greater explanatory power, principled handling of
missing data and hierarchy construction.
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2 An overview of Hidden Markov Tree Models

A tree y is an acyclic directed graph and as such it consists of a set of nodes
u ∈ Uy = {1, 2, ..., Uy}, a set of directed edges between the nodes (each edge
connects a parent node to a child node) and a set of labels ou ∈ R

d on nodes
u. Each node u has a single parent ρ(u), apart from node number one, the root
node. Conversely each node has a set of children, apart from the leaf nodes.

Density over tree-structured data can be modelled e.g. by a hidden Markov
tree Model (HMTM) [7] (analogous to hidden Markov model (HMM) [8] for se-
quential data). Each node u can be in one of K discrete states qu ∈ {1, 2, ...,K}.
A HMTM is defined by three sets of parameters: the initial probability distribu-
tion that describes the state q1 of the root, the transition probability distribution
that describes the transitions between parent and child states, p(qu|qρ(u)), and
the emission parameters that parametrise Gaussian distributions, f(.;μk,Σk),
one for each state k. which emit the labels. Here, μk ∈ R

d and Σk are the mean
and covariance matrix, respectively, of the Gaussian associated with emission
process in state k.

The HMTM distribution factorises as follows:

P (y) =
∑

q∈{1,2,...,K}Uy

P (q1)
∏

u∈Uy ,u�=1

P (qu|qρ(u))
∏

u∈Uy
P (ou|qu), (1)

where q ∈ {1, 2, ...,K}Uy is the set of all Uy-tuples over K hidden states.
Similarly to the forward-backward algorithm for HMM [8], the likelihood of an
HMTM can be efficiently computed by the upward-downward algorithm [7].

3 HMTMs as noise models for GTM

This section presents an extension of GTM from vectorial to tree structured
data in the spirit of [9], where GTM is extended to visualise sequential data.
Due to space limitations only the model formulation will be presented, detailed
derivations and more involved developments will be presented elsewhere. Our
model, GTM-HMTM, is a mixture of HMTMs. In order to have the HMTM
components topologically organised we constrain the mixture of HMTMs, by
requiring that the HMTM parameters be generated through a parameterised
smooth nonlinear mapping from the latent space [−1,+1]2 into the HMTM pa-
rameter space. As in GTM, we discretise the latent space into a regular grid of
points xc, c = 1, 2, ..., C. Each latent centre xc will correspond to a component
HMTM p(y|xc) with flat mixing coefficient 1/C.

Given a dataset T = {y(1),y(2), ...,y(N)} of N independently generated trees
the model likelihood is proportional to:

L ∝
N∏

n=1

C∑

c=1

∑

q∈{1,2,...,K}Un

p(q1|xc)
Un∏

u=2

p(qu|qρ(u),xc)
Un∏

u=1

P (o(n)
u |qu,xc), (2)

where Un stands for the number Uy(n) of nodes of tree y(n).
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The smooth nonlinear mapping yields the following sets of parameters for
each latent point xc:

πc = {p(q1 = k|xc)}k=1:K = {gk(A(π)φ(xc))}k=1:K

T c = {p(qu = k|qρ(u) = l,xc)}k,l=1:K = {gk(A(T l)φ(xc))}k,l=1:K

Bc = {μ(c)
k }k=1:K = {A(Bk)φ(xc)}k=1:K , where

• the function g(.) is the softmax function, which is the canonical inverse link
function of multinomial distributions and gk(.) denotes the k-th component
returned by the softmax.

• xc ∈ R
2 is the c-th grid point,

• φ(.) = (φ1(.), ..., φM (.))T , φm(.) : R
2 → R is an ordered set of M non-

parametric nonlinear smooth basis functions (typically RBFs),

• the matrices A(π) ∈ R
K×M , A(Tl) ∈ R

K×M and A(Bk) ∈ R
d×M are the

free parameters of the model.

The model likelihood is maximised using the expectation-maximisation (EM)
algorithm.

Regarding the covariance of the emission distribution, we noticed that higher
quality models were obtained when instead of direct modelling of the covariance,
the covariance was calculated, in the spirit of [10], at the end of each M-step using
standard update equations. Having trained the model, we can then represent
each data item y(n) with a point p(n) in the latent space given by the expectation
of the posterior distribution over all latent space: p(n) =

∑C
c=1 p(xc|y(n))xc.

4 Experiments

We have used two datasets in our experiments. The first is an artificial toy
dataset produced by sampling from 4 HMTMs with 2 hidden states with 2-
dimensional Gaussian emissions of fixed spherical variance, each corresponding
to one artificial class. All patterns have the topology of a binary tree with 15
nodes. The parameters of the models were set so as to ensure that it would be
impossible to distinguish the classes from the observations alone, without taking
into account the underlying tree structure.

The second dataset consists of images produced by the Traffic Policeman
Benchmark (TPB) used to demonstrate the functionality of SOM for Structured
Data (SOMSD) in [5]. The images resemble traffic policemen, houses and ships
of different shape and size. Connected components in each image have a parent-
child relationship1. Nodes are labelled with a 2-dimensional vectors denoting
the centre of gravity of the component that node stands for. The dataset defines
12 classes that are represented on the plots with 12 different markers.

1we have restricted TPB to produce only images expressed as trees
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Both datasets were normalised in each dimension to zero mean and unit
standard deviation. The lattice was a 10x10 regular grid (i.e. C = 100) and the
RBF network consisted of M = 17 basis functions; 16 of them were Gaussian
radial basis functions of variance σ2 = 1 centred on a 4x4 regular grid, and one
was a constant function φ17(xc) = 1 (for a bias term). Training starts with
random parameters initialised with uniform distribution in [−1, 1].

Figure 1(a) shows the GTM-HMTM topographic organisation of the toy
dataset2 for K = 2. Each point on the plot represents an input pattern (tree).
Four different markers correspond to the four generative classes used to con-
struct the data set. Training is completely unsupervised and class markers are
used only after the training when plotting the projections. A clear topographic
organisation of classes has been achieved - there is an evident trend of patterns
of the same class to belong to the same cluster.

Figure 2(a) shows the visualisation of the TPB dataset3 produced by GTM-
HMTM with K = 2. In figure 2(a), next to each cluster a representative image
is displayed. The model has clearly achieved a level of topographic organisation.
It is interesting to note the emerging sub-clusters. Class × has been split into
two sub-clusters, one with policemen with the right arm lowered and one with
the right arm raised. The same has happened for class © which has been divided
into policeman with the right arm lowered and policemen with the arm raised.
Also for the class of ships with two masts, class ∗, it is interesting to note that it
has been divided into three sub-clusters. Nevertheless, the model has not been
successful in the visualisation of the classes representing houses. No clusters have
been formed as all classes have been merged into one big cluster representing
a superclass of all the images of houses. Moreover, we attempted training for
K = 3, 4, but with suboptimal results.

As a comparison, in figures 1(b),2(b) we also present the results obtained by
using SOMSD on the two datasets. We tried numerous parameter settings for
SOMSD and picked the best results4. On the toy dataset GTM-HMTM performs
better (but note that the dataset may be biased toward GTM-HMTM), while
SOMSD is better at the TPB dataset. It manages to distinguish between all of
the classes, especially the classes of houses that are problematic in GTM-HMTM.
On the other hand, SOMSD does not discover the subclasses that GTM-HMTM
does for the policemen and ships.

5 Discussion

Because of the absence of a clear cost function, the performance of SOMSD
was measured in [5] as the accuracy of classification of data. After the map

2Covariance of the emission distribution was initially set to Σk = 2I for both states k = 1, 2
(I stands for the identity matrix). We also tried initialising it with Σk = 2I, 3I, 5I with similar
success.

3Initial covariance matrix for the emission distribution was set to Σk = 2I for both states
k = 1, 2. We also tried initialising the covariance matrix with Σk = 1I, 3I which yielded similar
results and Σk = 0.5I which failed to achieve the same level of topographic organisation.

4according to the measure in [5]
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(a) (b)

Fig. 1: Visualisation of toy dataset using GTM-HMTM (a) and SOMSD (b).

formation, a secondary hold-out test dataset was used. Items from the test set
were represented on the trained map and each test item was predicted to have the
class label of its closest neighbour from the training set on the map. The accuracy
was then defined as the percentage of correctly classified test points. The results
of this measure on the toy dataset were 90% and 60% for GMT-HMTM and
SOMSD respectively. The results were reversed as for the TPB dataset GMT-
HMTM and SOMSD achieved 55% and 95% of accuracy respectively.

We argue that such a procedure makes sense only when the class organ-
isation of the data correlates with the driving force behind topographic map
formation. If for example, the classes of trees are organised along the lines that
cannot be reasonably captured by HMTM modelling, there is simply no reason
why the achieved classification accuracy of GMT-HMTM should be high. But
low classification rate would just mean that our model-driven topographic map
formation does not correlate well with the particular class labelling scheme. In
such cases one can simply switch to local noise models that are more correlated
with the class labelling. Alternatively, one might say that he/she wanted to see
topographically organised data representations driven by aspects captured by
HMTM (or any other noise model employed) and stick with the obtained topo-
graphic maps, irrespective of the class labels. This is an unsupervised learning
setting after all... Again, without knowing the exact mechanism behind the to-
pographic map formation, it is problematic to assign any performance-related
interpretation to the classification rate obtained on the trained map. On the
other hand, the probabilistic nature of GTM-HMTM allows us to objectively
and in a principled manner evaluate and compare the models as density estima-
tors.
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(a) (b)

Fig. 2: Visualisation of TPB dataset using GTM-HMTM (a) and SOMSD (b)
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