
Estimation of Tangent Planes for Neighborhood

Graph Correction

Karina Zapién, Gilles Gasso and Stephane Canu

INSA de Rouen - LITIS, EA4051
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Abstract. Local algorithms for non-linear dimensionality reduction [1],
[2], [3], [4], [5] and semi-supervised learning algorithms [6], [7] use spectral
decomposition based on a nearest neighborhood graph. In the presence of
shortcuts (union of two points whose distance measure along the submani-
fold is actually large), the resulting embbeding will be unsatisfactory. This
paper proposes an algorithm to correct wrong graph connections based on
the tangent subspace of the manifold at each point. This leads to the
estimation of the proper and adaptive number of neighbors for each point
in the dataset. Experiments show graph construction improvement.

1 Introduction

Spectral decomposition has become a broad used technique for dimensionality
reduction algorithms (Isomap [1], Laplacian Eigenmaps [3], Hessian Eigenmaps
[4], MVU [5]) and semi-supervised learning algorithms (LapSVM [6], [7]). These
methods consist on defining a neighborhood graph, were nodes represent data
points and edges indicate if two points are close to each other (therefore, nearest
neighbors). Under certain conditions, satisfactory results can be obtained by
using these techniques.

One important drawback is the fact that the underlying manifold can’t be
estimated if the nearest neighborhood graph is not properly defined and contains
shortcuts. That is, two points are considered to be neighbors whereas they are
actually far away from each other in the sense of measured distance along the
manifold. This is explained by the fact that most dimensionality reduction algo-
rithms’ goal is to preserve the euclidean distance between the nearest neighbors
defined by the graph. The algorithm is constrained to keep these distances in
the new embedding, but these can be constraints not achievable in a smaller
space.

This paper uses the idea that a manifold is differentiable and therefore a
tangent subspace to the original manifold can be estimated. This will correspond
to a tangent hyperplane in a lower space. All nearest neighbors should lie close
to this tangent subspace, where distance will be measured not only with the
euclidean distance but also with the deviation angle to the tangent subspace.

2 Background

We are willing to find the embedding manifold M ⊂ R
D of input data X =

{xi}, xi ∈M, i = 1, . . . , n. The pursued objective is the projection of X into a
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subspace R
d (d < D) that preserves the topological characteristics of M. This

will yield to dataset Y = {yi}, yi ∈ R
d. To achieve this goal, several spectral

decomposition techniques [1], [4], [5] proceed by constructing the neighborhood
graph related to the training points and then finding a transformation of this
graph. Two common used techniques to determine nearest neighbors of each
point in the dataset are:
• k-NN technique, which consists on choosing for each xi in the dataset the

closest k points as nearest neighbors of xi.
• ε-ball, where all points with distance to xi less or equal than ε are considered

nearest neighbors of xi.
Local approximation techniques may have good results, but if the distribution

along the submanifold is not uniform or dense enough, the adjacency graph will
be either not connected or shortcuts will appear.

To test our algorithm, the Isomap method is used, which is an extension
of the Multidimensional Scaling [8] algorithm. Isomap is based on spectral de-
composition of the geodesic distance matrix. Approximation of the geodesic
distances is done by measuring the shortest path along the graph.

Choi [9] developed an algorithm to remove noisy points that produce short-
cuts. For each point xi the total flow is defined as the number of shortest paths
passing through xi. This criteria for removing points, might delete useful points
and might miss several edges that should be removed. A similar approach was
used by Yang [10]. Other approaches are based on the construction of minimal
spanning trees [11] which avoids having cycles, but will not necessarily respect
intrinsic topological aspects. Finally, the work of Mekus [12] and Wang [13] are
based on the estimation of the tangent subspace at each point independently.

We propose a method to correct neighborhood graphs using this last approach
of tangent subspaces. One important difference is the fact that the estimation of
the tangent space is done taking into consideration tangent spaces on neighboring
points and therefore, respecting continuity in the manifold.

3 Manifold and Tangent Subspace

By definition, a manifold is a differentiable surface, therefore, if we have its
k nearest neighbors, and the data lies on a connected submanifold M ∈ R

d,
assuming that d < k, the tangent subspace at each point can be estimated
from its k nearest neighbors. If additionally, the maximum curvature θ of the
manifold is known, analysis of nearest neighbors can be done regarding the
euclidean distance with respect to a point xi (which should be smaller than a
value ε deduced from θ), and the angle deviation with respect to the tangent
subspace Pi at xi (which should be smaller than θ).

Let Ni = {xj |xj is nearest neighbor of xi} with |Ni| = ki be the set contain-
ing the ki nearest neighbors of xi.

For all neighborhood Ni i = 1, ..., n, define Ii = {j|xj ∈ Ni}, as the set of
indexes of points belonging to neighborhood Ni, which will be also denoted as
Ii = {i1, i2, ..., iki}.
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Finally, define a matrix Ai of the form Ai = [xi1 ,xi2 , ...,xiki
] ∈ R

D×ki for
all i = 1, ..., n.

The implemented algorithm iterates between obtaining an estimation of the
set Ni and the approximation of the tangent subspace Pi at xi defined by Ni.

3.1 Tangent subspace estimation and neighborhood estimation

If the set of nearest neighbors Ni for point xi is well defined, that is, if the eu-
clidean distance in the original space approximate the distance along the man-
ifold, the desired orthogonal vector wi and bias bi that define the tangent sub-
space Pi at xi are the ones that minimize AT

i wi + b1, with 1 ∈ R
ki being a

vector of ones. These can be estimated as follows:

Pi(Ni) = {wi, bi} , with wi = (AT
i )+

1

||(AT
i )+1|| and bi = −xT

i wi (1)

where AT
i

+ represents the pseudoinverse of matrix AT
i .

Vice versa, if we have an adjusted tangent subspace Pi at xi and an initial
neighborhood N 0

i , we can measure the euclidean distance εij of xj ∈ N 0
i to xi

and the deviation angle θij with respect to Pi as follows

εij = ||xj − xi||2 θij = arcsin
| 〈wi, (xj − xi)〉|
||xj − xi||2

. (2)

Then, neighborhood Ni can be updated as follows:

xj ∈ Ni if εij < ε and θij < θ0 ∀ xj ∈ N 0
i . (3)

where θ0 is the maximum curvature input by the user and ε is estimated by the
algorithm (see step (4) in Section (4.1)).

3.2 Propagation of the tangent subspace estimation

Having a reliable estimation of Pi and Ni for point xi, this subspace is a good
approximation of Pj for a xj ∈ Ni. Then, Pi can be use to remove faulty nearest
neighbors in N 0

j by using a relaxed parameter θ′ > θ0 in Eqs. (3). Remaining
points will form set Nj which will allow us to calculate Pj(Nj) using Eqs. (1).

3.3 Finding a starting point

The calculation of the tangent subspace at each point xi is done by propagation
of the tangent subspace Pi at point xi to its neighbors. This can be done only
if we know that Pi is a reliable approximation. Therefore, the departure point
is an important matter.

A first approximation to findNi, can be done by using the k nearest neighbors
of each point, then each Pi will be estimated with these neighborhoods. If at
a point xi and at all its k-nearest neighbors in Ni a close approximation of the
tangent subspace was found, the perpendicular vectors to their tangent subspaces
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should be all quite similar. Therefore, it will be taken as starting point xt0 , the
one whose orthogonal vector wt0 maximizes the cost function

C(wi, Ii) =
1
ki

∑

j∈Ii

|〈wi,wj〉|. (4)

If there is a shortcut at point xi, the estimated subspace at this point will
be biased, and this subspace won’t have the same orientation as its nearest
neighbors, giving a smaller value in Equation (4).

4 Algorithm Description

4.1 Initialization phase

This phase consists on finding a point xt0 located in a low curvature zone. So fur-
ther tangent subspace approximations based onPt0 are reliable.
1: Input: curvature θ and the maximum number of neighbors k, set ki = k.

Set N 0
i ← {xj |xj is a k-nearest neighbor of xi}, ∀i = 1, ..., n.

Set Φij = ∞, i, j = 1, ..., n, which will be later updated with the deviation
angle of xj to stable tangent subspaces Pi.

2: Estimate the initial tangent subspace P0
i (N 0

i ) = {wi, bi}, i = 1, ..., n using
an analogous form of Eq. (1).

3: Find xt0 with the best tangent subspace approximation, that is, find t0 that
maximizes (4)

4: Set ε = ||xt0−xt0k+1 ||, being xt0k+1 the (k+1)-nearest neighbor of xt0 . This
sets for all xi ∈ X the maximum radius of ε-balls for a neighborhood Ni.

5: Set Idone ← {xt0}. Index of points xi ∈ X having a stable tangent space Pi.
6: Select nearest neighbors Nt0 ∈ N 0

t0 using tangent plane P0
t0 and Eqs. (3).

7: Update Pt0(Nt0) using Eq. (1).
8: Set deviation angle Φt0j = ∠(wt0 ,xj − xt0), for all j /∈ Idone.

4.2 Successive Approximation phase

This phase uses reliable estimations of tangent subspaces to make approxima-
tions at other points. Graph is traversed considering deviation angles.
1: Choose t = argminj{Φij | i ∈ Idone, j ∈ Ii}, so that for a point xs, s ∈

Idone, xt ∈ Ns has the minimum deviation to tangent subspace Ps, let
s = argmini{Φit, i ∈ Idone}.

2: Select nearest neighbors Nt ∈ N 0
t using Eqs. (3) with Pt = Ps and θ =

θ + ∠(xt − xs,Ps).
3: Update Pt(Nt) with Eqs. (1).
4: Set Idone = Idone ∪ {xt}.
5: Set Φtj = ∠(wt,xj − xt), j /∈ Idone. Set Φjt = ∞, j ∈ Idone to avoid

selecting again xt.
6: If |Idone| < n, go to step (1), else go to (7).
7: If the graph is not connected, make a single component based on Φij

εij .
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5 Experimental Results

To validate our algorithm, we applied it on a swissroll example which real under-
lying dimensionality lies in R

2. We generated a lightly sparse dataset with 300
points and compared our results to k-NN and the total flows algorithm [9]. Pa-
rameter k was set to values between 8 and 16, giving in our case similar results.
Curvature θ was set to 20 degrees.
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Fig. 1: Resulting NN graph
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Fig. 2: Resulting embedding

If the tangent subspace at each point is estimated and the neighborhood
graph is built using this subspace, we are able to reduce the shortcuts in the
original graph construction with the k-NN method. Additionally experiments
showed that if we add Gaussian noise with zero mean and .1 variance to this
dataset, our algorithm is robust.

6 Conclusions

The estimation of tangent subspaces at each point can improve the structure of
a initial graph given a maximum number of nearest neighbors. Use of neigh-
borhood information helps to improve the estimation of tangent subspaces. We
propose an algorithm that helps to detect the presence of shortcuts in a graph.
Future work includes automatic estimation of the manifold curvature and use of
this technique in real data.
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