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Abstract. In this paper we are interested in estimating the num-
ber of components in a mixture of multilayer perceptrons. The penal-
ized marginal-likelihood criterion for mixture models and hidden Markov
models introduced by Keribin (2000) and, respectively, Gassiat (2002) is
extended to mixtures of multilayer perceptrons for which a penalized-
likelihood criterion is proposed. We prove the consistency of the BIC
criterion under some hypothesis which involve essentially the bracketing
entropy of the generalized score-functions class.

1 Introduction

Although linear models have been the standard tool for time series analysis
for a long time, their limitations have been underlined during the past twenty
years. Real data often exhibit characteristics that are not taken into account by
linear models. Financial series, for instance, alternate strong and weak volatil-
ity periods, while economic series are often related to the business cycle and
switch from recession to normal periods. Several solutions such as heteroscedatic
ARCH, GARCH models, threshold models, multilayer perceptrons or autoregres-
sive switching Markov models were proposed to overcome these problems.

In this paper, we consider models which allow the series to switch between
regimes and more particularly we study the case of mixtures of multilayer per-
ceptrons. In this frame, rather than using a single global model, we estimate
several local models form the data. For the moment, we assume that switches
between different models occur independently, the next step of this approach
being to also learn how to split the input space and to consider the more general
case of gated experts or miztures of experts models (Jacobs et al., 1991). The
problem we address here is how to select the number of components in a mixture
of multilayer perceptrons. This is typically a problem of non-identifiability which
leads to a degenerate Fisher information matrix and the classical chi-square the-
ory on the convergence of the likelihood ratio fails to apply. One possible method
to answer this problem is to consider penalized criteria. The consistence of the
BIC criterion was recently proven for non-identifiable models such as mixtures
of densities or hidden Markov models (Keribin, 2000 and Gassiat, 2002). We
extend these results to mixtures of nonlinear autoregressive models and prove
the consistency of a penalized estimate for the number of components under
some good regularity conditions.

The rest of the paper is organized as follows : in Section 2 we give the
definition of the general model and state sufficient conditions for regularity.
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Afterwards, we introduce the penalized likelihood estimate for the number of
components and state the result of consistency. Section 3 is concerned with
applying the main result to mixtures of multilayer perceptrons. Some open
questions, as well as some possible extensions are discussed in the conclusion.

2 Penalized likelihood estimate for the number of compo-
nents in a mixture of nonlinear autoregressive models

The model - definition and regularity conditions

Throughout the paper, we shall consider that the number of lags is known
and, for ease of writing, we shall set the number of lags equal to one, the extension
to [ time-lags being immediate. Let us consider the real-valued time series Y;
which verifies the true model

(1) Yi=FY (Yi1)+ex, (t), where

- X is a sequence of i.i.d. variables with values in a finite space {1,...,po}
and probability distribution 7°

- foreveryi € {1,...,po}, F? (y) is a parametric nonlinear function depend-
ing on #9. We suppose throughout the rest of the paper that F? are sublinear,
that is they are continuous and there exist (a?,b?) positive real numbers such
that |F? (y)] < af [y + ), y € R

- for every i € {1,...,po}, €; (t) is an i.i.d. centered Gaussian noise with
standard deviation o?.

We need some regularity conditions in order to prove the main result. Let
us introduce the hypothesis

2

(HS) Y, af]a?]" <1

Yao and Attali (2000) proved that under the hypothesis (HS), model (1) has
a unique strictly-stationary solution Y;, geometrically-ergodic. Let us remark
that hypothesis (HS) does not request every component to be stationary and
that it allows non-stationary “regimes” as long as they do not apper too often.

Construction of the penalized likelihood criterion

Let {y1,...,yn} be an observed sample of the time series (Y}). Then, the
conditional density of y; with respect to yj_1 is

F e Lyr—1) = 202 7 12 (ur — F (yx—1))

Now let us consider all possible conditional densities up to a maximal number
of components P >0, Gp = Ule Gp,

Gp={919Wi,v2) =2t mifi(y2 — Fi (y1)), m >0, 37 m =1}
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where, for all i = 1,...,p, F; is a parametric function depending on 6;, sublin-
ear, and f; is a centered Gaussian density with standard error o;. Throughout
the following, we shall make a natural assumption on the compacteness of the
parameters : (HC) {(m;,6;,0;),i =1,...,p} belong to a compact set.

For every g € Gp we define the number of components as

p(9) :miﬂ{pe {17"'7P}: gegp}

and let po = p(f) be the true number of regimes. We can now define the
estimate p as the argument p € {1, ..., P} maximizing the penalized criterion

(2) T, (p) = SUPgeg, Iy (g) —Gnp (p)

where 1, (9) = Y p_5109 g(yr—1,yx) is the log-likelihood and a, (p) is a
penalty term.

Convergence of the penalized likelihood estimate

The next result is an extension of Gassiat (2002) for hidden Markov models
and since the main steps of the proof are the same, we shall omit it.
Theorem 1 : Consider the model (Y, Xy) defined by (1) and the penalized-
likelihood criterion introduced in (2). Let us introduce the next assumptions :
(A1) a, (-) is an increasing function of p, a, (p1) — a, (p2) — oo when
n — oo for every p1 > p2 and a"T(p) — 0 when n — oo for every p

(A2) the model (Y, Xy) verifies the weak identifiability assumption (HI)

p Po p Y4
Somifilyr = Fi(1) = D> m £ (2= FY (1)) & > _mide, = D w00
i=1 i=1 i=1 i=1

(A3) the parameterization 8; — f; (y> — F; (y1)) is continuous for every
(y1,y2) and there exists m (y1,y2) an integrable map with respect to the stationary
measure of (Yi,Yi_1) such that |log (g)] < m

(A4) Yy is strictly stationary and geometrically B-mixing, and the family
of generalized score functions associated to Gp

9(v1.v2) _q

5= oo ot = R o |
L=2(p)

g 1HL2(H) ‘ 0} C Lo ()

where p is the stationary measure of (Yi,Yr_1) and for every e >0
Hiy (6,8 [Hly) = O(Jlogel)

Hp (e,8,[|ll,) being the bracketing entropy of S with respect to the La-norm.
Then, under hypothesis (A1)-(A4), (HS) et (HC), p — po in probability.
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3 Mixtures of multilayer perceptrons

In this section, we consider the model defined in (1) such that, for every i €
{1,...,p0}, F? is a multilayer perceptron. Since non-identifiability problems also
arise in multilayer perceptrons (see, for instance, Rynkiewicz, 2006), we shall
simplify the problem by considering one hidden layer and a fixed number of
units on every layer, k. Then, we have that for every i € {1,...,po}

0, k04 0,i 0,i
Fz‘o (y) = ag" + Ej:l Qa; K ( 07;' + 517;9)
where ¢ is the hyperbolic tangent and

o_ [ 04 0, 0,i 20, 20, 0,i 70,
0; = (ao s Q- Q5 0015 P11 0 PoLks Pk

is the true parameter.Let us check if the hypothesis of the main result of
section 2 apply in the case of mixtures of multilayer perceptrons.

Hypothesis (HS) : The stationarity and ergodicity assumption (HS) is im-
mediately verified since the output of every perceptron is bounded, by construc-
tion. Thus, every regime is stationary and the global model is also stationary.

Let us consider the class of all possible conditional densities up to a maximum
number of components P > 0 :

Gp=Us_ G G =191 9(w1,12) = X0, mifi (y2 — Fi (1))}, where

e > m = 1 and we may suppose quite naturally that for every i €
{]—7 "'7p}7 T4 Z n >0

e for every i € {1,...,p}, F; is a multilayer perceptron
. i ) . .
Fi(y) =ap+ Zj:l o5 (B(Z),j + B{,jy)a where

0; = (aé,a’i, ...,afc,ﬁ(’;’l,ﬁil, ...,Bé’k,ﬁf’k) belongs to a compact set.

Hypothesis (A1) : a,(-) may be chosen, for instance, equal to the BIC
penalizing term, a, (p) = %plog (n).

Hypothesis (A2)-(A3) : Since the noise is normally distributed, the weak
identifiability hypothesis is verified according to the result of Teicher (1963),
while assumption (A3) is a regularity condition verified by Gaussian densities.

Hypothesis (A4) : We consider the class of generalized score functions

0
L2(w) # }

The difficult part will be to show that H[; (¢, S,[||l,) = O(|logel) for all
€ > 0 which, since we are on a functional space, is equivalent to prove that “the
dimension” of S can be controlled. For g € Gp, let us denote § = (4, ...,0,)
and m = (71, ...,mp), so that the global parameter will be ® = (6,7) and the
associated generalized score function sg := s4.

g1
, 9 € gP;

g _
1]

S:{sg, 8g =

||%_1||L2(#)
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Proving that a parametric family like S verifies the condition on the brack-
eting entropy is usually immediate under good regularity conditions (see, for
instance, Van der Vaart (2000)). In this particular case, the problems arise
when g — f and the limits in L? (u) of s, have to be computed. Let us split
S into two classes of functions. We shall consider Fy C Gp a neighbourhood of

f such that it exists 6. > 0 verifying Foy = {g € Gy, %— 1) L0 < (55} and
o
So = {sg, 9 € Fo}. On S\ Sy, it can be easily seen that
91 _ 92 _
H 7 - <2 ‘ 9 _ g2
||71_1||L2(”) ||T2_1||L2(#) LZ(;L) =9 f f Lz(u)
and we get that A (5,8 \ So, |1 [l,) = O (£)* ™7, where A (6,8 \ So, ||-]1,)

is the number of e-brackets necessary to cover S\ Sy and the bracketing entropy
is computed as logN) (¢, S\ So, I|Il5)-

As for Sp, the idea is to reparameterize the model in a convenient manner
which will allow a Taylor expansion around the identifiable part of the true
value. For that, we shall use a slight modification of the method proposed by
Liu and Shao (2003). Let us remark that when £ —1 = 0, the weak identifiability
hypothesis (A2) and the fact that for every i € {1,...,p}, m; > n > 0, imply that
there exists a vector t = (t;)y<;<,, such that 0 = to < t1 < ... <tp, = p and,

modulo a permutation, ® can be rewritten as follows : 6, ;11 = ... = 6y, = 62,
Z;i:ti,lﬂ m; = w0, i € {1,..,po}. With this remark, one can define in the

general case s = (s,-)KKp0 and ¢ = (qj)1<j<p so that, for every i € {1,...,po} ,
j € {ti_1 +1, ...,ti},
L]

t; 0
$i =D iy, 17T — T 45 = &5
Jj=ti—1+ % El;ti_lJrl o

and the new parameterization will be ©; = (¢, ¢y),

¢t = ((aj)lgjgp ) (Si)lfifpo—l)’ 'l/Jt = (q]‘)lgjgp, with ¢t containing all the
identifiable parameters of the model and v; the non-identifiable ones. Then, for
g = f, we will have that

= (69,60 .. 6,60, 0,..,0)7
S—— —_——
t1 tpo = tpo—1 Do —1

This reparameterization allows to write a second-order Taylor expansion of
% —1 at ¢Y. For ease of writing, we shall first denote

fi(y2—F;(y1)) 1

93 (o 2) = 90, (W:2) = 577 0 50009 0)

Then, the density ratio becomes :

—1 ti —1 t
$ o1 =0 (i m0) D @i+ (7 — X0 ) K% 435
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By remarking that when ¢; = ¢?, % does not vary with ¢;, we will study the
variation of this ratio in a neighbourhood of ¢? and for fixed v;. Assuming that

@iisjer (9)1<jcp (97) 1z, ad (9]7), ¢ Where

dg; %g; %9,
g‘; = % (¢?7¢t) ) g;l = [:)ggJZJ (¢?7wt) ’ g;‘” = agg;; (¢?7¢t)

are linearly independent in L? (i), one can prove the following :
Proposition 4 : Let us denote D (¢¢,1;) = HMT"”” - 1‘

For any
L2 ()
fized )y, there exists the second-order Taylor expansion at ¢ :

% —-1= (¢t — ¢g)TgE¢?,’d}t) + % (¢t - ¢?)Tgél¢?7¢t) (¢t - ¢?) + O(D ((z)tth)):

T T
(¢t - ‘ZS?) gqu?,wt) + % (¢t - ¢?) 92'4,97@) (¢t - ¢?) =0 ¢ =9
Using the Taylor expansion above, one can show that N (e, So, |||l,) =

o (%)Ckpo and the assumptions of Theorem 1 are verified.

4 Conclusion and future work

We have proven the consistency of the BIC criterion for estimating the number
of components in a mixture of multilayer perceptrons. In our opinion, two
important directions are to be studied in the future. The case of mixtures should
be extended to the general case of gated experts which allow the probability
distribution of the multilayer perceptrons to depend on the input and thus, to
learn how to split the input space. The second possible extension should remove
the hypothesis of a fixed number of units on the hidden layer. The problem of
estimating the number of hidden units in one multilayer perceptron was solved in
Rynkiewicz (2006), but it would be interesting to mix the two results and prove
the consistency of a penalized criterion when there is a double non-identifiability
problem : number of experts and number of hidden units.
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