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Resumo. In this work it is presented a new proposal to select a model in
the multi-objective training method of the Artificial Neural Network (NN).
In order to do this, information from the residue of the Pareto optimal so-
lution is used. The principle to decide for minimum autocorrelation of the
data is a criteria that guarantees the extraction of the current information
in the noisy data. The experiments show the performance of the proposed
DM for variations of the supervised learning problems.

1 Introduction

Although the single objective, error minimization, approach to supervised lear-
ning may, eventually, result on good generalization responses, it is well accepted
that training should also include model complexity minimization. Despite there
is no clear definition of complexity in the literature, it is usually associated with
the total number of network parameters. So, much of the last decades efforts
in the area were concerned on minimizing error and network size by using pru-
ning or constructive techniques [1]. Smaller size models were selected according
to their responses on validation and test sets. Model selection with alterna-
tive approaches, such as cross-validation, bagging and regularization [1] did not
explicitly refer to structural complexity, since any large enough network could
meet the selection criteria. In this approach, emphasis is given to the network
response instead to its actual size, so a large network may effectively behave like
a smaller one.

Smoothing and sampling restrictions imposed during training have the effect
of restricting the search to a limited region of the space of solutions. Although
this is not accomplished explicitly, in practice, it has also the effect of reducing
the network behaviour to those solutions that are within the restricted region.
From this perspective, it is expected to exist an objective function that is able to
control network effective complexity without restricting its size. The alternative
for this is to use also the norm ‖w‖ of network weight vectors to control network
response. The effect of imposing an upper bound into the values that can be
assumed by the network norm is to restrict its effective complexity, since a
network with a larger norm may assume also all the solutions of smaller norm
networks. So, the larger the norm, the larger the number of network solutions
that can be assumed.
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The relationship between norm and margin of large margin classifiers is one
of the basic premisses of SVMs formulation [1]. Its relationship with network
generalization has also been shown in another context [2]. This supports the
idea that the trade-off between bias and variance [3] could be controlled by an
appropriate balance between norm ‖w‖ and error e2 of the training set, since
simultaneous minimization of both objectives in the region of interest is not
possible. Minimum error corresponds to large variance/minimum bias and, si-
milarly, minimum norm corresponds to large bias/minimum variance. Therefore,
the pair of objectives (norm,error) and (bias,variance) are conflicting near the
objective functions minima, what demands a proper treatment that is able to
trade-off them. The region of effective solutions in the space of objectives, that
is called the Pareto set, can be reached by using Multi-objective optimization
approaches [4].

Based on these principles, a multi-objective optimization algorithm for Multi-
Layer Perceptron (MLPs) has been proposed in [5]. This algorithm employs a
constrained optimization approach to restrict the solutions to the Pareto set
efficient solutions, defined by the two objective functions ‖w‖ and e2. Every
network solution corresponds to a pair (e2, ‖w‖) on the space of objectives (see
Figure 1. The Pareto set is found in the boundary between the image set of
the vector function (e2(w), ‖w‖) and the set of points outside this image. The
Pareto set contains the efficient solutions, that cannot be further minimized in
both objectives. Every pair (e2

i , ‖wi‖) on the Pareto set corresponds to the
solution of minimum ‖wi‖ for a given e2

i , or to a solution of minimum error e2
i

for a given norm ‖wi‖. Solutions that are above the Pareto set can be confronted
with other ones that have both ‖w‖ and e2 smaller.
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Figura 1: Each point in the error × norm image set corresponds to the pair
(‖w‖,e2) that is associated to at least one MLP. There are no MLPs associated
to pairs (‖w‖,e2) in the region of the non-associated points.

Once all the Pareto set solutions are generated, one of them is selected, accor-
ding to a pre-established decision making criteria. In the original multi-objective
learning proposed in [5], the Pareto set is sampled via successive constrained op-
timizations, and the decider picks up the solution with the smallest validation
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error. Although it has been shown that the validation error curve has a mini-
mum within the Pareto set range [5], this original strategy has the drawback of
relying on the availability of a validation data set. In this paper, a new decider is
proposed, that is based on the idea of minimizing the autocorrelation of residues
within the Pareto set solutions. This eliminates the need for a validation data
set, allowing all the data to be used on training.

2 The MOBJ Algorithm

A multi-objective optimization algorithm 1 for MLPs has been proposed in [5].

min
w

1
N

N∑

j=1

(yj − f(xj; w))
2

subject to : ‖w‖ ≤ σ

(1)

On the above, w is the weight vector, N is the length of the training set, xj

and yj are, respectively, j-the input and output example of training set. For
calculating a number ζ of Pareto-optimal solution, it is necessary to define this
number and variation σ. The chosen solution is the best trade-off between the
norm and the error is performed after determining some Pareto-optimal solution
and is named Decisor Making (DM).

3 The Decision Making

The DM is expected to choose the solution that best fits the underlying function
fg(x). Consider the supervised learning of a MLP, with the training examples
given by sample points xi in a domain D and corresponding sample values yi:

{(xi, yi)|yi = fg(x) + ξi}
N
i=1 (2)

where ξ is i.i.d. zero mean random error (noise), x is a multidimensional input
and y is a scaled output. The estimation made is based on a finite number (N) of
the training data. The training data is independent and identically distributed
(i.i.d.) according to some (unknown) joint probability density function.

Let w be a weight vector, that is obtained via a learning procedure, and
f(x, w) be the result obtained associated to the solution w. The DM can be
stated as: From a given set of Pareto-optimal solution, to find the minimized

solution in this set, the function is defined as:

U = ‖fg(x) − f(x, wi)‖
2. (3)

The final solution generates a residual error with variance σ2 [6]. Therefore,

equivalence between fg(x) and f(x; w) makes that the residue of each solution
after the training, corresponds to noise ξ for best solution and its variance is
determined by 1

N

∑N

i=1 (ξi)
2 = σ2.

1See [4] for reference of multi-objective optimization.
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4 The Proposed Decisor Making

The decision method that is proposed here uses the residue left from the dif-
ference between the training data and the outputs of the resulting MLP. The
optimal solution, under the proposed criteria, will bring closer the target function
fg(x) that underlies the data y = fg(x)+ ξ like the remaining residue ξ becomes
not correlated The DM is based on minimizing the autocorrelation residue, over
the set of the Pareto-optimal solution.

The decision process chooses the MLP with the residue that is more similar
to a random process. Such process has small correlation (Rxx → 0). The corre-
lation measured [7] of the data set can be used to detect non-randomness. This
supports the idea of minimal autocorrelation as an indicator of the MLPs with
best generalization. The autocorrelation measured from a pair of variables of
the same stationary process taken from the same process X is given by:

RXX(t, t + τ) = RXX(τ) = E[X(t), X(t + τ)], (4)

where E[.] is a expectation of the random variable. Taking the variable τ as
an offset between the two samples of the same stationary process. The decision
rule, by minimal autocorrelation, is given by:

w∗ = arg
w∈W∗

min Rxx, (5)

with Rxx given by:

Rxx = E[(di + ξi) − f(xi; w), (di + ξi) − f(xi; w) + τ ]. (6)

Pareto‖w‖

e
∗

N ∗ = ‖w∗‖

eT e Rxx

σ
2

1 σ
2

2 σ
2

3

Figura 2: Pareto set and autocorrelation curves for different noises.

5 Results

The MLP is designed with more hidden neurons than the minimal number that
would be needed, in order to show over-fitting effects smoothed by the multi-
objective training with autocorrelation DM. The functions f1 and f2 with Gaus-
sian noise have been used as targeted functions, with input values scattered in
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different intervals.

f1(x) = sin (x) f2(x) = 4.26(e−x − 4e−2x + 3e−3x) (7)

A MLP with topology 1-10-1 (31 parameters) has been designed by multi-
objective training with minimum autocorrelation and minimum validation error
DMs. The activation function is sigmoidal (hidden neurons) and linear (output
neuron). The MLPs have been trained with 50 noisy patterns. The MOBJ
method generated 20 Pareto-optimal solutions. The Table 1 and 2 show results
for numerical experiments with different sampling and different noises. The Fi-
gure 5 show the final solution by the minimum correlation DM for mapping the
targeted function (f1) with variance noise σ2 = 0.1.

Tabela 1: Approximation with noise patterns σ2 = 0.20 and distinct sampling.

Points
‖w‖ Rxx Error (MSE)

50 2.9976 8.7250 0.0980
40 5.9995 7.4902 0.0539
30 3.9968 5.6357 0.1131
20 2.9996 6.3902 0.1200
10 7.0015 3.4630 0.1792

Tabela 2: Results for numerical experiments with different noises.

Noise

∑
e2 ‖w‖

0.10 0.0222± 0.0299 4.9904± 0.7968
0.20 0.0511± 0.0275 4.6457± 0.2462
0.25 0.0640± 0.0155 4.6954± 0.2925
0.30 0.0859± 0.0213 4.9723± 1.1640

6 Conclusions

The objective of this paper was to present results from a decision procedure based
on the minimization of the autocorrelation residue over the Pareto-set of error
× norm multi-objective training problem. The proposed DM does not need any
previous information about the problem. Compared to the DM by minimum
validation error, the new DM does not depend on any validation data, which
allows a consistent training procedure with less training data. The proposed
DM seems to be robust against high noise levels in the data and guarantee
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Figura 3: Pareto Set and Best Solution (Best Approximation).

high capability generalization of neural models. Another important factor to be
highlighted in the experiments is the DMs capacity to remain, regardless of the
complexity, or either, the final solution which did not change very much in the
experiments with training sets of different noise levels.
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