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Abstract. The idea of automatically searching neural networks that
learn faster and generalize better is becoming increasingly widespread. In
this paper, we present a new method for searching near-optimal artificial
neural networks that include initial weights, transfer functions, architec-
tures and learning rules that are specially tailored to a given problem.
Experimental results have shown that the method is able to produce com-
pact, efficient networks with satisfactory generalization power and shorter
training times.

1 Introduction

Manual searching of Artificial Neural Networks (ANNs) for a specific problem
currently relies heavily on human experts with sufficient knowledge on the differ-
ent aspects of the network as well as the problem domain. When the complexity
of the problem domain increases and when near-optimal networks are desired,
manual searching becomes more difficult and unmanageable [1]. An optimal
ANN can be seen as an instance of a neural network tailored to a specific prob-
lem, thereby having a smaller architecture with faster convergence and better
generalization performance [1, 2, 3]. The specific and correct (near-optimal)
configuration of ANN models for a certain problem through trial-and-error is
considered a tedious, less productive and error-prone task [1, 3]. The construc-
tion of near-optimal ANN models involves difficulties such as the exponential
number of parameters that need to be adjusted; the need for a priori knowledge
of the problem domain and ANN functioning to define these parameters; and
the presence of an expert when such knowledge is lacking [3].

The automatic searching of near-optimal models appears to be a good so-
lution and avoids the manual trial-and-error approach. The automatic search
process of near-optimal ANN models is widely explored, using evolutionary tech-
niques. One kind of evolutionary technique, the Genetic Algorithm (GA), is
often used to search near-optimal ANN models with topology optimization, as
presented in [4, 5]. Other works include transfer functions, initial weights and
learning rules, as presented in [1, 3, 6]. There are also works that employ
non-evolutionary techniques, which prune connections that are considered less
significant [7, 8] or freeze weights when the same inputs are submitted to the
network [7].

In this work, we present an ameliorated version of a method developed
for searching near-optimal networks using ANN and GA with direct encoding,
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named NNGA-DCOD (aNN + GA - Direct enCODe) presented in [3]. The
NNGA-DCOD differ of other works because search ANNs having high perfor-
mance, low complexity, trained with five epochs only and because the evolution-
ary searches uses individuals with direct encoding [3]. NNGA-DCOD achieved
good results in the primary experiments, motivating the improvement of the
method and, consequently, increased experimentation in order to verify the real
power of this method in automatically searching near-optimal ANNs for a given
problem. This paper is organized as follows: Section 2 presents the NNGA-
DCOD; Section 3 describes experimental results; and Section 4 summarizes our
conclusions and presents future work.

2 NNGA-DCOD Method

NNGA-DCOD adopts a framework for searching ANNs, as defined by Yao [2].
The framework used in the present work has a layered process of an evolutionary
search of ANNs, as illustrated in Figure 1. In this process, the evolution speed
is faster with the initial-weights layer than with the other layers. This is a
consequence of the high dimensionality of exploration space for initial weights
due to the lack of a priori knowledge on excellent sets of initial weights. The
higher layers search for architectures and learning algorithm, which have more
a priori knowledge and allow the restriction of a more specific search space.

Evolutionary search of learning algorithms and its parameters

Back-propagation Scaled-Conjugate
Gradient

Quasi-Newton Levenberg
Marquardt

Evolutionary search of architectures and node transfer
functions

Evolutionary search of initial weights

F
a
s
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Fig. 1: Evolutionary search in layers [1].

The variation of ANN parameters (training algorithm parameters, initial
weights, architecture, etc.) produce different results for the same problem [9],
contributing to the use of an evolutionary search of the layers. In the NNGA-
DCOD GAS is used to locate basins of attraction, where near-optimal solutions
are more likely to be found. Four different ANN training algorithms are then
applied to refine the search in these basins: Back-propagation (BP), Levenberg-
Marquardt (LM), quasi-Newton Algorithm (QNA) and Scaled Conjugate Gra-
dient (SCG). In NNGA-DCOD, there is a GA for each layer described in Fig-
ure 1, which exchange information for the search of near-optimal ANNs. Table 1
describes the parameters used in the NNGA-DCOD method. GA and ANN
parameters were defined after the observation of executions of the algorithms
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Parameters for: Values
G

A
- Encoding Direct
- Elitism / Mutation 10% / 40%
- Selection Tournament
- Population/Generation (Algorithms|Architec.|Weights) 7/30 | 10/5 | 10/5

A
N

N

- Type MLP feedforward
- Transfer functions Pure-linear (P), Tang-

sigmoid (T) and Log-
Sigmoid (L)

- Number of: hidden layers / nodes / training epochs up to: 3 / 16 / 5
- Range of initial weights [-0.5, 0.5]
- Output neuron linear

T
r
a
in

in
g

a
lg

.

BP - Learning rate and momentum [0.05, 0.25]
LM - Learning rate [0.001, 0.02]
SCG - Step lengths [1.0E-06, 100]
- Limits on step sizes [0.1, 0.6]
QNA - Scale factor to determine performance [0.001, 0.003]
- Scale factor to determine step size [0.001, 0.02]
- Change in weight for second derivative approximation [0, 0.0001]
- Regulating the indefiniteness of the Hessian [0, 1.0E-06]

Table 1: NNGA-DCOD parameters.

developed. The training algorithm parameters are those used in [1].
The method starts the search by randomly generating the populations for

all kinds of individuals, Next, the fitness is calculated based on the ANN Mean
Squared Error (MSE) achieved in the training set. The genetic operators main-
tain the diversity of individuals for the search of all layers with a tournament
and a small range of aleatory selection, where the new individuals generated
for the next offspring must be distinct from individuals of the actual offspring.
Apparently, the amount of individuals used on the NNGA-DCOD is small, but
as this method is iterative with nested loops, many new individuals are created
at every generation of each kind of search. Thus, the search space explored is
large and satisfactory results are achieved. Therefore, 3 nested data structures
are used for individuals. The first is composed of a set of parameters for the
training algorithms and a population of the second data structure. The second is
composed of a set of architectures and a population of the third data structure.
Finally, the third data structure is composed of a set of sets of initial weights.

The improvements executed on the NNGA-DCOD refer to the fitness calcu-
lation and solution evaluation found in the search process. Currently, the error
information from the training set is used for the calculation of the fitness of all
individuals. The error from the validation set is used only to present the gradual
evolution of the search. Lastly, the near-optimal solutions found by the method
are tested with unseen data along with a process search (test set). These changes
the search developed process make reliable and honest and were been adopted
based on benefits previously pointed out and discussed by [10].

3 NNGA-DCOD: Experimentation setup

We have selected five well-known benchmark problems to evaluate the NNGA-
DCOD method: Cancer with 9 attributes(at), 699 examples(ex) and 2 classes(cl);
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Glass (9at, 214ex, 6cl); Heart-Cleveland (35at, 303ex, 2cl); Horse (58at, 364ex,
3cl); and Prima-diabetes (8at, 768ex, 2cl). To perform the experiments, we used
five iterations of two-fold cross-validation (5 x 2 cv). At each iteration, the data
were randomly divided into halves. One half was the input for the algorithms
(70% for training and 30% for the validation set), and the other half was used
to test the final solution (test set). To determine whether the differences among
the algorithms are statistically significant, we used a combined F -test described
by [10]. Let p

(j)
i denote the difference in the accuracy of two classifiers in fold

j of the i-ht iteration of 5 x 2 cv, p̄ = (p(1)
i + p

(2)
i )/2 denote the mean, and

s2
i = (p(1)

i − p̄)2 + (p(2)
i − p̄)2 the variance, then

f =

∑5
i=1

∑2
j=1(p

(j)
i )2

2
∑5

i=1 s2
i

is approximately F distributed with ten and five degrees of freedom. We rejected
the null hypothesis that the two algorithms have the same error rate with a 0.05
significance level if f > 4.74. The accuracy results presented in the next section
are based on error information from the ten test sets. This methodology was
used in experiments due to the fact that usual method generates an increase
of type-I errors: The results are incorrectly deemed significantly different more
often than expected, given the level of confidence used in the test [10].

The ANN search through trial-and-error was performed following the previ-
ously described methodology, using the same database split scheme and number
of training epochs. We performed 30 runs in each fold for the following network
setup: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and 24 hidden neurons for one hidden
layer with the (T) transfer function. The purpose of these experiments was to
compare the performance between NNGA-DCOD and the manual process, using
the same database split scheme and number of training epochs.

3.1 NNGA-DCOD: Experimentation results

LM achieved the best mean performance among the tested algorithms for the
cancer, prima and glass problems, proving significantly different (α = 0.05)
and better than the other algorithms. No tested algorithms was significantly
different or better for heart and horse problems, but LM was among those that
achieved better results for these problems. The better results obtained with
LM are a consequence of it being a method that works with second derivative
information and converges faster than first-order methods. LM is different from
other algorithms that need more training time to achieve a better adjustment of
the weights of the network, such as BP.

Table 2 shows the near-optimal networks found with the NNGA-DCOD
method. These networks are better than those found with the manual method,
having simple architectures and in some cases having the smallest possible con-
figuration for a MLP. Even with a very simple architecture, the networks found
automatically achieved satisfactory error performances and can be considered as
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near-optimal solutions having a simple structure and satisfactory performance.
The majority of near-optimal networks were achieved with the LM algorithm,
but in some cases, such as the heart problem, the best solution was obtained
with SCG algorithm. Other solutions that use simple training algorithms can
be adopted on place of the LM algorithm. Examples of this are the heart and
horse problem, where the solution found with QNA and SCG, respectively, had
a similar performance, but with a simpler structure and training algorithm.

The near-optimal networks demonstrate that a small number of training
epochs did not prevent the method from achieving satisfactory performances,
since the parameters of the network were well-chosen. A good set of parame-
ters for ANNs that are tailored to a given problem contributes toward a better
performance of the network with regard to the problem. A good example can
be seen in the performance of solutions obtained with BP in the automatic and
manual methods. The reduction of error is very significant comparing the two
methods for searching near-optimal ANNs in the all problems.

Data sets / NNGA-DCOD Trial-and-error
Algorithms Near-optimal ANN Mean and StD Near-optimal ANN Mean and StD

Test error Setup Test error Setup

C
a
n
c
e
r BP 0.0371 3P 0.0464 0.0064 0.1821 4T 0.2333 0.0461

LM 0.0177b 1L 0.0249 0.0047 0.0200 12T 0.0264 0.0054
QNA 0.0221 1L 0.0301 0.0043 0.0274 4T 0.0321 0.0044
SCG 0.0235 1T 0.0306 0.0038 0.0248 2T 0.0336 0.0093

P
r
im

a BP 0.1854 3P 0.1912 0.0037 0.2335 12T 0.2706 0.0275

LM 0.1477b 4T 0.1548 0.0044 0.1559 6T 0.1575 0.0052
QNA 0.1605 9P 0.1672 0.0041 0.1761 8T 0.1805 0.0116
SCG 0.1595 1P 0.1669 0.0040 0.1748 10T 0.1820 0.0092

H
e
a
r
t

BP 0.1090 1T 0.1395 0.0167 0.2279 6T 0.3010 0.0431
LM 0.0960 4L 0.1212 0.0131 0.1109 2T 0.1351 0.0125
QNA 0.1001 1T 0.1234 0.0135 0.1208 2T 0.1404 0.0183

SCG 0.0889b 3T 0.1252 0.0189 0.1164 4T 0.1405 0.0146

H
o
r
s
e

BP 0.1563 1P 0.1660 0.0057 0.2310 10T 0.3334 0.0783

LM 0.1427b 3T 0.1521 0.0043 0.1606 4T 0.1688 0.0053
QNA 0.1444 9T 0.1554 0.0073 0.1615 6T 0.1680 0.0038
SCG 0.1497 1L 0.1551 0.0041 0.1623 8T 0.1699 0.0042

G
la

s
s

BP 0.1129 1P 0.1176 0.0039 0.2147 8T 0.2858 0.0766

LM 0.0864b 4L 0.0940 0.0044 0.0928 6T 0.0959 0.0082
QNA 0.1003 6T 0.1029 0.0021 0.1048 12T 0.1092 0.0031
SCG 0.1001 7P 0.1026 0.0019 0.1105 16T 0.1116 0.0042

Table 2: Near-optimal ANNs found through NNGA-DCOD and trial-and-error
for all data sets. Results significantly different and better than others are high-
lighted in bold. Best solutions between the near-optimal are marked with “b”.

Table 3 displays the performance comparison from the results obtained with
NNGA-DCOD and other work found in the literature. Comparisons between
these methods must be made with caution, as the results are obtained with
different experimental model setups and the errors are estimated with different
methods. Nonetheless, the table shows that NNGA-DCOD is able to achieve
very interesting results with very compact networks and few training epochs.
For the diabetes, horse and glass problems, the NNGA-DCOD produced the
best results among the methods tested, whereas for the other problems, he is
among those that achieved the best results, producing interesting performances.
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Method Error
Cancer Prima Heart Horse Glass

Nnga-dcode 0.0177 0.1477 0.0889 0.1427 0.0864
Gepnete [5] – 0.1927 0.1368 – 0.3516
Covnete [5] – 0.1990 0.1426 – –
Mobnete [5] – 0.1984 0.1363 – 0.3516
Cnndane [7] 0.0116 0.1875 – – –
Coopnn-Ensemblee [4] 0.0057 0.1615 0.0735 0.2088 0.1321

Table 3: Comparison between Evolutionarye and non-Evolutionaryne methods.

4 Conclusions

In this paper, we presented an ameliorated version of a method for searching
near-optimal ANNs. The results show that this method is able to achieve com-
pact networks with satisfactory performances, even when compared with other
methods. The improvements helped to demonstrate the power of this method,
but due to the rigorous criterion of selection, the near-optimal networks found
in this work had only one hidden layer. Future work will be the revision of the
selection criterion that currently discard complex networks even when having a
satisfactory performance.
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