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Abstract. In this work we introduce a method for visualization of
fuzzy label information obtained from prototype based fuzzy labeled self-
organizing map (FLSOM) for fuzzy classification. FLSOM returns vectors
of fuzyy class labels for the prototypes containing class simlarity informa-
tion. This information is used for apropriate visualization by an adequate,
similarity preserving color space embedding realized by an advanced MDS-
approach. Using this embedding, classification results can be visualized by
the similarity-based color representation of the data. The method is ap-
plied for image segmentation with uncertain (fuzzy) class membership.

1 Introduction

Real world data are often characterized by uncertain and possibly inconsistent
information. In particular in medical and biological applications this problem
plays an important role. If data are processed by machine learning approaches,
this uncertainty has to be taken into account. Prototype based fuzzy classifica-
tion offers a possible solution for learning of labeled data in the context of clas-
sification tasks. Respective algorithms are the fuzzy labeled neural gas (FLNG
- [1]) or its self-organizing map (SOM) based counterparts FuzzySOM [2] and
fuzzy labeled self-organizing map (FLSOM - [3]), which offer better data visual-
ization possibilities due to its underlying regular grid structure of self-organizing
maps (SOM - [4]). This advantage is caused by the topology preserving mapping
realized by unsupervised SOMs under certain conditions. Usually, the supervised
variants return a probability vector assigned to each prototype, which reflects
the class probabilities for each possible data class. Yet, FuzzySOM does not
minimize a predefined cost function because both parts of the adaptation, the
SOM learning and the subsequent learning vector quantization are not based on
a gradient descent approach. FLSOM, however, is based on the Heskes’ variant
of SOMs, for which a cost function is given. The SOM adaptation scheme is
imposed by a gradient descent on classification accuracy. Further, the topology
preservation may be lost by the subsequent learning in FuzzySOM, whereas it
is not in FLSOM.

Yet, the visualization of fuzzy classification information is difficult. One
method is to consider the barplots of the probability vectors as demonstrated
for FLSOM [5]. However, we can use a special feature of FLSOM. In contrast
to FuzzySOM, FLSOM inherently contains the neighborhood cooperativeness
also in label adaptation. Therefore, in case of adequate conditions, topological
ordering is obtained for both prototype distribution and label vectors. From the

103



ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

latter one it is possible to detect class similarities, which can be used for improved
visualization: We determine a similarity preserving color representation of label
vectors, here done by multi-dimensional scaling (MDS) in a faithful similarity
preserving manner. In this way we obtain an appropriate fuzzy visualization.
We demonstrate the method for a problem of image segmentation in biological
structures.

2 Algorithms, notations, and used data

Assume data v € V are given distributed according to an underlying distrib-
ution P(V). The prototypes are vectors w, € R%, whereby r € A, A is an
index set. We assume that each training point v is equipped with a label vector

€ [0, 1)V (©) whereby the component x; of x determines the assignment of v
to class i for i = 1,..., N(c). Hence, we can interpret the label vector as prob-
abilistic or possibilistic fuzzy class memberships. In case of crisp labeling, one
label component x; simply is the unit whereas all other are zero. Accordingly,
we enlarge each prototype vector w, of the map by a label vector y, € [0, 1] ()
which determines the portion of neuron r assigned to the respective classes. Dur-
ing training by the above algorithms, prototype locations w, and label vectors
yr are adapted according to the given labeled training data (v,x) following a
gradient descent on the cost function

Erisom = (1 — ) Esom + BErL (1)

where § € [0,1] is a balance factor to determine the influence of the goal of clus-
tering the data set and the goal of achieving a correct labeling. The classification
accuracy is assessed by

Err, = / ZQW v, W, - Yr)2 dv with g, (v, w,) = exp <_£<‘2[7—’)/Zvr)>
(2)

and the Fson-term is the cost function of Heskes” SOM approach [6]:
1 v
Bsow = 52757 | PO) LD SUHOE AR L

We remark that the gradient % —EL contributes to the prototype adaptation, and,
hence, it is dependent on the c1a551ﬁcat10n accuracy. Further, this fact implies
the topologlcal ordering also of the class labels at the grid due to the coupling
of the two neighborhood functions g, (v,w,) and h,(r,r’).

To investigate the degree of fuzzy information possessing, we applied different
types of prototype based supervised vector quantizers. The first one is the gen-
eralized relevance learning vector quantization (GRLVQ, [7]), which, however, is
only able to handle crisp class information for both data and prototypes. Sec-
ondly, we apply FLSOM for the crisp labeled data keeping in mind that FLSOM
delivers fuzzy labeled prototypes. In the last step we used fuzzy labeled data
which are obtained by special fuzzyfication of the crisp data set [8]. The proto-
type label vectors are then embedded in the RGB-color space by an advanced
MDS-scheme described below. However, other embedding schemes are possible
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[9]. In this way we get a color representation for each prototype label. Thereby,
for GRLVQ this color representation is fixed apriori because the prototype labels
are not subject to adaptation, whereas for the other algorithms the prototype
labels are adjusted during learning yielding different color representations in
dependence on the learned fuzzy classification.

The data for this application are serial transverse sections of barley grains
at different developmental stages. Developing barley grains consist of three ge-
netically different tissue types: the diploid maternal tissues, the filial triploid
endosperm, and the diploid embryo. Because of their functionality, cells of a
fully differentiated tissue show differences in cell shape and water content and
accumulate different compounds. Based on those characteristics, scientists expe-
rienced in histology are able to identify and to label differentiated tissues within
a given section of a developing grain (segmentation). However, differentiating
cells lack these characteristics. Because differentiation occurs along gradients,
especially borders between different tissue types of developing grains often con-
sist of differentiating cells, which cannot be identified as belonging to one or the
other tissue type. Thus, fuzzy processing is highly desirable. However, since
(training) examples, manually labelled by a biological expert, are costly and
rarely available, one is interested in automatic classification based on a small
training subset of the whole data set. In our example, the training set consists
of 4418 data points (vectors) whereas the whole transverse section of the image
contains 616 x 986 samples, which finally have to be classified and visualized
as an image for immediate interpretation by biologists. The data vectors are
22-dimensional, the number of classes is N(c) = 11.

3 High-Throughput MDS (HiT-MDS-2)

For embedding the prototype labels we use an advanced MDS scheme. Gener-
ally, MDS refers to the optimization of N point locations t; = (t%7 . ,tiD> €RP

in a target space in such a way that their distance relationships faithfully reflect
those of the original data vectors o; € RP [10]. Obviously, in case of dimension
reduction with D > D such optimization will need to find a compromise solu-
tion. Let d;, = ¢ (0;,04) be the input space distances and d; ,, = d (t;,t;) =D
be the distance in target space R” and T be the matrix of all target vectors. For
Euclidean input and target distances the minimum of the raw point-embedding
stress function S = ZKk (045 — di7k)2 = min yields target configurations which
are equivalent to the linear projections of principal component analysis (PCA).
Although the benefit of MDS over PCA is more flexibility in the choice of dis-
tance measures, even many alternative MDS related stress functions suffer from
the presence of local minima. One avoidable reason for local minima is a too
stringent formulation of the stress function. In most metric approaches recon-
structed distances are forced to fall onto the unit slope regression line in the
corresponding §; ,-vs.-d; ;, Shepard plot. In contrast to that, HiT-MDS-2 maxi-
mizes the more relaxed Pearson correlation r € [—1;1]

- Zq<k g,k — 1s) - (dg — 1a) _. B
\/Zq<k (5q,k - M5)2 : Zq<k (dq,k - Md)Q vC-D
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GRLVQ | FLSOM
training data set (IV ~ 10000) | 89.5% 77.5%
whole data set (N = 1500000) | 95.8% 73.9%

Table 1: Classification accuracies for the different algorithms using the crisp
labeled data. For FLSOM, majority voting is applied.

between entries of the source distances and the reconstructed distances. While,
for correlation maximization, powers of (1 — )X were minimized in the old
formulation (HiT-MDS) [11], the new formulation (HiT-MDS-2) makes use of
Fisher’s Z'-transform for improved convergence of the stress function S:

1
S=-ZoroDoT =min Wich':§log<Zi—:> Zmax, a=1+e (4)

Locations of points t; in target space are obtained by iterative gradient descent

Atk = —6% of step size € on the stress function S using the chain rule:

oz’ a

= - - 5
or r? —a? 5)
Or  _ (0ij—ps) D —(dij —pg)-B (©)
8dm D-\C-D

d; ; 2 (th —t*
8&; = ( i i) (for Euclidean target space) (7)

In addition to better convergence than the old HiT-MDS with its critical choice
of the combination of exponent K and learning rate, HiIT-MDS-2 makes use of
two non-critical parameters, the learning rate e = 0.1 and ¢ = 0.001 in Z’ to
prevent infinity that could occur in Fisher’s original formula with a = 1.

In the applications here, we identify the original data vectors of MDS with
the prototype labels y,.

4 Application

We applied the above mentioned algorithm to the available exemplary data set.
We used for GRLVQ 55 prototypes (5 for each class). We used a 7 x 7 FLSOM
of approximately the same complexity and to meet the topographic mapping
requirements for SOMs assessed by the topographic product [12]. For FLSOM
we applied both the crisp labeled data and the fuzzified version. For comparison,
we determined the classification accuracy for crisp data by matching for GRLVQ
and by majority voting for FLSOM. The results are depicted in Tab. 1. For result
visualization we embedded both prototype vectors and prototype label vectors
into the RGB-color space separately using the similarity preserving HiT-MDS
for each configuration. The three-dimensional prototype embeddings for GRLVQ
and FLSOM are visualized in Fig. 1. One can clearly observe the improved color
coding by the utilization of FLSOM class fuzzy labels, which inherently contain
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Fig. 1: Color representation of labels for GRLVQ (left) and FLSOM (right)
prototypes obtained by HiT-MDS. The learned class similarities represented by
similar colors for FLSOM labels are obvious, whereas for GRLVQ all class simi-
larities are assumed as equidistant.

the class similarity information learned by FLSOM, whereas class similarities
for GRLVQ assumed to be equidistant. Further, the visualization of the full
image according to the obtained (fuzzy) classification and applied color space
embedding is depicted in Fig. 2 !. We remark the improved visualization by
the usage of fuzzy classification. In particular, the usage of class similarity
information detected by FLSOM yields a more adequate color representation.

5 Conclusion

In this paper we demonstrate the usage of (advanced) MDS for visualization of
fuzzy classification results. For an exemplary image segmentation application of
transversal barley grain sections we obtain good visualization results.

THIS WORK WAS SUPPORTED BY THE GERMAN MINISTRY OF EDUCATION
AND RESEARCH (GRANTS NO. 0313115 AND 0312706A).
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Fig. 2: Image segmentation results for FLSOM and GRLVQ - color coding is
obtained by HiT-MDS-2. A: original image, B: manually crisp labeled data, C:
manually fuzzy labeled data, D: GRLVQ for crisp data, E: FLSOM for crisp
data, F: FLSOM for fuzzy data.
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