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Abstract.

Since perceptual and motor processes in the brain are the result of in-
teractions between neurons, layers and areas, a lot of attention has been
directed towards the development of techniques to unveil these interactions
both in terms of connectivity and direction of interaction. Several tech-
niques are derived from the Granger causality principle, and are based on
multivariate autoregressive modeling, so that they can only account for the
linear aspect of these interactions. We propose here a technique based on
conditional mutual information which enables us not only to describe the
directions of nonlinear connections, but also their time delays. We com-
pare our technique with others using ground truth data, thus, for which
we know the connectivity. As an application, we consider local field poten-
tials (LFPs) recorded with the 96 micro-electrode UTAH array implanted
in area V4 of the macaque monkey’s visual cortex.

1 Causality analysis in neural systems

Understanding the connections between different recording sites in the brain,
and their directions and delays, is of main interest in electrophysiology. Among
these recordings, an important role is played by the local field potentials (LFPs),
which are related to the synchronized input impinging onto the observed area.
These signals are recorded using a low impedance extracellular micro-electrode
and then low-pass filtered at 300 Hz so as to mask the action potentials.

The concept of Granger causality [1] tells us how one time series is helpful
in forecasting another. When the variance of the prediction error is reduced by
including in the forecasting model not only the previous data points of a time
series, but also previous data points of another time series, we conclude that the
second time series causes the first one. As a prediction paradigm, autoregressive
modeling is used. As this concept originally only dealt with bivariate time series,
it was expanded to multichannel recordings by using multivariate autoregressive
modeling (MVAR). Let us denote the neuronal recordings from the k channels by
Z(t) = (x1(t), x2(t), ..., xx(t)). The MVAR model is then defined as Z?:o A;z(t—
J) = é(t), where é(t) = (e1(t),ea(t), ..., ex(t)) is the vector of a multivariate zero
mean uncorrelated white noise process, Ag = I, Ay, Ao, ..., Ap the k X k matrices
of the model coefficients, and p the model order, which is calculated by Akaike’s
Information Criterion (AIC). In the frequency domain, the equation for MVAR
is written in the form A(f)-X(f) = E(f), which give us the relationship between
the Fourier images of the variables. The last equation can be rewritten in the
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form X (f) = A=Y (f)E(f) or X(f) = H(f)E(f), where H(f) = A~1(f). Based

on the last equations, different measures for detecting causality were proposed:

1) Partial Coherence (PC) [2]: x4;(f) = Mi;(J) , where M;;(f)
M;i(f) - Mj;(f)

is the minor of the spectral matrix S(f) = HVH* and V the correlation

matrix of the noise é(t); 2) Partial Directed Coherence (PDC) [3]: m;;(f) =

A
k| = ({C” ; 3) Directed Transfer Function (DTF) [4]: ~;,;(f) =
VEE A (D)
= JHU (:f) | ; 4) full frequency Directed Transfer Function (fDTF) [5]:
VEE L Ham (D)2

|Hi;(f)]
Vb [Hon ()
[5): 64 (f) = mi; (f) - X (f)-

After calculating such a measure, the significance levels are determined using
the surrogate data method [7], so that only values significantly different from
noise are taken as an indication for the presence of a connection between the
corresponding channels. The significance level is set to a = 0.05. As indicated
by Schreiber and Schmitz [8], we use é — 1 =19 surrogates. As surrogates, we
use the iIAAFT method [8] which destroys the cross-correlation between the time
series.

In order to determine the performance of the different measures listed above,
we consider 3 types of artificially-constructed graphs: 1) consisting of random
connections between 5 to 7 nodes with one real LFP input and linear connections
(as in Figure 1), 2) several LFPs inputs and linear connections, and 3) several
LFPs inputs and nonlinear connections (modeled by sigmoids). The results are
shown for 100 trials for each of the three cases, respectively (columns 1-3). We
see that mostly incorrect results are produced.

Uij(f) =

; 5) direct Directed Transfer Function (dDTF)

2 Nonlinear causality

2.1 Statistical hypothesis

In order to answer the question why these techniques mostly yield incorrect
results, let us examine the nature of the LFP time series more closely. We take
a subset of 5 time series from the 96 electrode recordings obtained with the
UTAH array (Cyberkentics Inc., Foxborough, Massachusetts, USA), which was
implanted in the visual cortex V4 of the monkey brain (data courtesy of Rufin
Vogels, same lab), and examined the following null hypothesis Hy: we have a
multivariate linear stochastic process with arbitrary degree of cross-correlation
[6]. We use the method of surrogate data [7] to test this hypothesis. By using
the iterative multivariate surrogate technique [8], we construct 100 surrogates,
which preserve their auto- and cross-correlations in all constructed time series,
and which are thus conform to the null hypothesis. Nonlinear redundancy was
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taken as a discriminant statistic [9]. The null hypothesis was rejected for the
significance level 0.01. This means that the multivariate autoregressive model
does not fit to the LFPs data, and that by consequence LFPs have a nonlinear
structure (which was also proved by using surrogate data technique with Volterra
series as discriminant statistics [11]), and nonlinear connections between them.
So the MVAR model is not satisfactory for LFPs and this is why the linear
techniques do not generate correct results.

2.2 Causality based on conditional mutual information

In light of the previous finding, we need an estimator that is not based on a
MVAR expansion and that can capture nonlinear relations between nonlinear
channels. Previously, it was suggested to calculate causality graphs in differ-
ent spectral bands [5] and use Kullback-Leibler divergence [14]. In the first
case, the nonlinear relations are approximated by linear ones. So we do not
obtain a correct picture about the interactions between the electrode recordings.
The second one is prone to computational difficulties. Palus and co-workers
[10] introduced the concept of conditional mutual information for detecting
synchronization in EEG signals, termed by them the mutual coarse grained
information rate (MCIR): i(z1|22) = == Y79 MI(z1(t), z2(t + 7)|22(t)) —

Tmazx

2T:M Z:ii’j‘:ﬂ:ﬁ MI(x1(t),z2(t + 7)) (Where Tpna, is such that for 7 > 740
MI(z;(t),z;(t+7) ~ 0 for all data sets j = 1..k) and vice-versa with respect to
9, and they looked where the difference becomes zero. Hence, their approach
is actually not conformous with the concept of Granger causality, and is not
intended for detecting connectivity (such as the delay of the connection and the
direction at the onset of synchronization). Furthermore, they do not have a
statistical test for detecting (the onset of) synchronization.

We propose to use mutual information MI(x(t),xz2(t)) [12], where x(¢)
and z5(t) are recordings from the arrays. This measure gives us the common
information or the information flow between these two channels. As it is a
symmetric measure (MI(zq1,22) = MI(x2,21)), and since we like to find the
direction of flow, we modify it as M1 (x1(t),x2(t — 7)). In this case, we measure
the flow between time series x1(t) and the previous state of x9(t), delayed by
time 7. So we describe the information flow between these two channels with a

method 1 2 3
PC 0% 0% 0%
PDC 24% | 19% | 13%
DTF 23% | 20% | 11%
DTF | 25% | 15% | 8%
dDTF | 31% | 25% | 25%
CMI 99% | 94% | 91%

Table 1: Comparison between different methods for detecting causality based on
LFPs. The percentage indicates the proportion of correct graphs found.
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time lag 7. But the concept of Granger causality [1] is about how helpful data
points of a second time series are when we include them into the prediction model
of the first time series. Hence, as a nonlinear analog for Granger causality, we
must use the conditional mutual information (CMI) in the form MI(xy(t), z2(t—
Tzt = 1), ..., z1(t — n)).

For estimating the conditional mutual information we use the equality
MI(z;y|z) = MI(z;y,z) — MI(x;z), which allows us to reduce the estima-
tion of the CMI to the estimation of two unconditional ones. For the estimation
of the mutual information, we take the binless estimator based on k-nearest
neighbor statistics [13].

As an example, we examine causality for the graph shown in Figure 1. We put
in the first node of the graph the real time series of an LFP and in the fourth node
we put Gaussian noise with fixed autocorrelation of the second order. The cou-
pling schema was constructed according to the equations: x1(t) = LF P, z5(t) =
alxl(t - 2) + blN(O, 1),1’3(t) = agxl(t - 1) + ag.’ﬂg(t — 3) + bQN(O, 1),$4(t) =
AR(2),x5(t) = asaxs(t—2)+bsN(0, 1), where ay, and by, are real numbers, N(0,1)

is the standard normal distribution (zero mean and unit variance).

Channel

LFP (real data from UTAH array)

LU
LI
L 1L
L 3 )1
[]

AR(2) frequency

Fig.1: Coupling model Fig.2: CMI between the channels

We calculate the CMI between the channels (using only 300 data points),
as described above. The result for the CMI between each pair of channels vs.
the time delay 7 is presented in Figure 2. In this figure, the i-th column shows
influence of the i-th time series onto the other channels. This means that in
the position (j,4) we have MI(z;(t), z;(t — 7)|z;(t —1),...,z;(t —n)). When we
analyze the first column, we can see that in the second and third rows there
are peaks in the MI above the horizontal line (significance level, see further).
This indicates that the first channel influenced the second and third ones. From
the value of 7 where each peak appears, we can calculate the time delay of the
influence between the channels.

The horizontal line in each plot indicates the significance level for the null
hypothesis Hy: below this level, we don’t have any dependency between the
channels; for every point above this line, the hypothesis is rejected and their is
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a dependency. For testing this hypothesis, we use the surrogate data test [7],
where all surrogates must preserve all properties of the initial time series but all
connection between the time series must be destroyed. Because we have LFPs
recordings of relatively long time lengths, and we use only short time intervals for
causality estimation (300 points), it is possible to divide the recording into short
subintervals of length equal to the length used for estimating the CMI (i.e.,
300 time points). No we can shuffle the different subintervals for generating
appropriate surrogates. So we have time series which preserve all properties of
the recording. We only need to take care that the subintervals do not overlap.
As a result of this procedure, we destroy all connections between the recordings.

The result for the proposed method, for the artificially generated graphs, is
shown in Table 1.

2.3 Application to UTAH micro-electrode data

In this simulation, we analyze a data set consisting of 96 LFP recordings from
the UTAH array implanted in area V4 of the macaque monkey’s visual cortex
(courtesy of Rufin Vogels). The result of the causality analysis is presented in
Figure 3. We observe that the connections are structured and mostly vertically
oriented, and perhaps arranged in two groups. It is tempting to relate the ob-
served structure to the columnar organization of area V4, mediated by horizontal
connections, but we still need to verify that.

Fig. 3: Connectivity analysis of the UTAH micro-electrode array data

3 Conclusion

We have compared different methods for causality analysis of local field potential
data, and introduced a new method based on conditional mutual information
(CMI). We have considered ground truth data for the comparison and have
shown that CMI gives better results. This can be explained by the presence of
nonlinear connections between the nonlinear LFP time series, while the stan-
dard methods assume linearity. In addition, the CMI-based method not only
provides us with the correct connections and their directions, but also with their
time delays. We have applied our method to LFP recordings made with the
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96 micro-electrode UTAH array, which revealed a structured connectivity pat-
tern. An aspect that still remains to be examined in LFP causality analysis is
the distinction between directed and undirected interactions between recording
channels. This will be adressed in our future work.
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