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Abstract. We propose a new algorithm for estimating the causal struc-
ture that underlies the observed dependence among n (n ≥ 4) binary
variables X1, . . . , Xn. Our inference principle states that the factoriza-
tion of the joint probability into conditional probabilities for Xj given
X1, . . . , Xj−1 often leads to simpler terms if the order of variables is com-
patible with the directed acyclic graph representing the causal structure.
We study joint measures of OR/AND gates and show that the complexity
of the conditional probabilities (the so-called Markov kernels), defined by
a hierarchy of exponential models, depends on the order of the variables.
Some toy and real-data experiments support our inference rule.

1 Introduction

Discovering causal relationships is one of the most relevant challenges of science.
Inferring causal relations from statistical data becomes more and more relevant
as more and better data have become available in recent years. Until the early
nineties, it was widely considered impossible to discover causal structures in
observational data without using any controlled experiments. The seminal works
of Pearl [1] and Spirtes et al. [2] showed that, under reasonable assumptions,
it is possible to get hints on causal relations from non-experimental statistical
data.

Their well-known approach for generating causal hypotheses, formalized by a
directed acyclic graph (DAG), is based on the Markov condition and the faithful-
ness assumption: Among all graphs that contain enough causal arrows to explain
all conditional statistical dependences, one prefers those structures which allow
only these conditional dependences. One version of a causal inference algorithm
based on these principles is the inductive causation (IC) algorithm1 [1]. How-
ever, if few or no conditional independent relations are observed, a large set of
structures is equivalent with respect to the implied conditional dependence and
undistinguishable by this conventional approach. Additional inference rules are
therefore desirable. The goal of our approach is to gain additional hints on causal
directions from the simplicity or “plausibility” of the corresponding conditional
probabilities (the so-called “Markov kernels”).

1A refinement of the IC is implemented as the PC algorithm in TETRAD program
(http://www.phil.cmu.edu/projects/tetrad/).
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2 Principle of plausible Markov kernels

With respect to an order X1, . . . , Xn, the joint probability measure of n variables
may be factorized into P (x1, . . . , xn) = P (x1)P (x2|x1) · · ·P (xn|x1, . . . , xn−1) =
∏n

j=1 P (xj |anj) . The shorthand anj := (x1, . . . , xj−1) denotes the values of
all j − 1 ancestors ANj := (X1, . . . , Xj−1) of Xj . Obviously, any reordering
Xπ(1), Xπ(2), . . . , Xπ(n), where π ∈ Sn is a permutation, defines another factor-
ization. Moreover, if P satisfies the Markov condition with respect to a DAG
G, we can decompose the joint measure into P (x1, . . . , xn) =

∏n

j=1 P (xj |paj),
where paj is a tuple of values of all kj parents of Xj in G. We may consider the
factorization above as the special case where G is the unique complete acyclic
graph that corresponds to the ordering X1, . . . , Xn, i.e. G has arrows from each
Xi to every Xj with i < j. The conditional probabilities P (xj |paj) are called
the Markov kernels corresponding to G. Likewise, we call P (xj |anj) the Markov
kernels corresponding to π.

Our assumption of plausible Markov kernels (short: plMK) states that the
Markov kernels of real-world probability distributions tend to be simpler and
smoother with respect to those complete graphs (orderings) which contain the
true causal structure as a subgraph2. We define the most plMK as the unique
solution of the following constrained entropy maximization. Let the value set
Xj of each variable Xj be given and furthermore P (X1, . . . , Xj−1) be already
known. Let αj , βij denote the observed mean value of Xj and XiXj , respec-
tively. Then the most plMK given the observed first and second moments is the
conditional probability measure P (Xj |X1, . . . , Xj−1) = P (Xj |ANj) that maxi-
mizes the conditional entropy H(Xj |X1, . . . , Xj−1) subject to E(Xj) = αj and
E(XiXj) = βij , for all i ≤ j. This definition of the most plMK captures the
linear interactions if the variables have the entire IR as domain, which the in-
ference principle of Shimizu et al. [3] is actually also based on. However, their
causal inference principle is only justified for real-valued variables, since linear
effects do not exist in the general case. For discrete/categorical or hybrid causal
structures, our method obtains conditional probabilities which are smooth in an
intuitive sense. Some examples of real-world data with various bounded contin-
uous domains can be found in [4].

In the current paper, we focus on variables with binary domains. The mo-
tivation to study binary variables and the induced probability measure is that
they allow us to define causal relations by some Boolean functions like OR and
AND, which are simplified models for many causal relations in real life. Let the
value set of every binary variable be {0, 1}. On can show that the most plMK
of a binary Xj according to the definition above can be written as

P (Xj=1 | anj)=
1

2
+

1

2
tanh(λ+

j−1
∑

i=1

λixi) for i = 1, . . . , j−1 .

2It is certainly hard to justify our assumption theoretically. Actually only extensive exper-
iments with real-life data can really decide whether such kind of simplicity principle provides
a reasonable causal inference rule or not.
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The causal influence of each ancestor Xi (i< j) on Xj can be characterized by
the parameter λi. If λi negative, Xi has a repressive effect on the occurrence
of Xj (independent of the value assignment of the other ancestors) and if λi

positive, Xi is conducive to Xj . Such a unique separation into repressive and
conductive variables should clearly be a feature of the simplest potential cause-
effect relations. Based on this observation, it is natural to consider the most
plMK as part of a hierarchy of exponential models as follows. Since the tanh
function is invertible in the open interval (0, 1) we may represent every strictly
positive Markov kernel of a binary Xj with ancestors ANj by P (Xj =1 | anj) =
1
2 + 1

2 tanh(Fj(anj)) with Fj(anj) = λ +
∑j−1

i1=1 λi1xi +
∑j−1

i1,i2=1 λi1i2xi1xi2 +

· · · +
∑j−1

i1,...,ij−1=1 λi1...ij−1
xi1 · · ·xij−1

. We define K
(j)
k as the set of conditional

probability distributions P (Xj |ANj) for which all coefficients λ in Fj with more
than k indices vanish and shall drop the superscript j when this will lead to no
confusion. We obtain the hierarchy K0 ⊂ K1 ⊂ · · · ⊂ Kj−1. One can verify
that the constrained entropy maximization leads to terms in Kk if the set of
constraints is extended by terms up to the moments E(Xi1Xi2 · · ·Xik

). We will
therefore consider the above hierarchy as a natural definition of the complexity of
the Markov kernels and observe that our “most plMK” are in K1 which is the first
non-trivial class, since for all kernels in K0 the variables ANj do not influence

Xj at all. We define MX1,...,Xn

1 as the set of joint measures on X1, . . . , Xn for

which all Markov kernels P (xj |anj) are in K
(j)
1 . The asymmetry of the set M1

with respect to a reordering of variables is decisive in this paper. Based on the
above assumption of plMK, the following are the two main steps of our plMK
causal order discovery algorithm.

Step 1 According to each of the altogether n! hypothetical orders Xπ(1), · · · ,
Xπ(n), compute the most plMK P (Xπ(1)), · · · , P (Xπ(n)|Xπ(1), . . . , Xπ(n−1)) and
then calculate the corresponding joint measure Pπ.

Step 2 Evaluate the goodness of fit to given data within resulting n! joint mea-
sures Pπ and find out the orders corresponding to the winners.

We propose to apply the maximum log-likelihood approach or the so-called
Scheffé tournament3 to evaluate the goodness of fit to data in step 2.

3 OR/AND gates with random inputs

First, we would like to show that the Markov kernels describing OR/AND gates
are both in the closure of the class K1. To see this, let binary X1, . . . , Xn−1

correspond to the input bits of an OR gate and Xn the output. The Markov
kernel of Xn can be defined by P (Xn=1 | ann) := 1 −

∏n−1
i=1 (1 − xi). Defining

Pk(Xn =1 | ann) := 1
2 + 1

2 tanh(−k+2k
∑n−1

i=1 xi), we have limk→∞ Pk(xn|ann) =

P (xn|ann), i.e. P (Xn|ANn) is in K
(n)
1 . Now we consider the joint distribution

P (X1, . . . , Xn) that is generated by the OR gate when the inputs X1, . . . , Xn−1

3The Scheffé tournament is a kind of minimum distance estimate, see [5, 6]. The advantage
of this method compared to the maximum log-likelihood approach is that the latter is more
sensitive to small deviations in the regions of small probability.
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are randomly chosen with uniform distribution, i.e. P (xj |anj)=1/2 for all j <n.

Clearly the joint measure P is in MX1,...,Xn

1 . Now we consider an ordering of
the variables where the output is not at the end. Without loss of generality we
consider the order X2, . . . , Xn, X1. We have

P (X1 =1 |x2, x3, . . . , xn−1, Xn =1) =

{

1 for x2 = x3 = · · · = xn−1 = 0
1/2 otherwise (1)

and P (X1 =1 |X2 = · · · = Xn = 0) = 0 . (2)

Note that the event Xn = 0 and Xi = 1 for some i ∈ {2, . . . , n−1} does not occur
and the corresponding conditional probabilities need not to be specified. We will
show that there is no Markov kernel in the closure of Kn−3 that satisfies equation
(1). We are particularly interested in the Markov kernel of X1 since it depends on
n−1 variables and is therefore the natural candidate for being the most complex
Markov kernel. We write P (X1 = 1 |x2, . . . , xn) = 1

2 + 1
2 tanh(F (x2, . . . , xn),

where F is an appropriate function. Define a function F̃ with n−2 arguments by
F̃ (x2, . . . , xn−1) := F (x2, . . . , xn−1, Xn =1). If the kernel (1) was in the closure
of Mn−3, there would exist a sequence Fk with polynomials of degree n−3 and a
corresponding sequence F̃k of degree n−3 such that F̃k(x2, . . . , xn−1) tended to
infinity for x2 = x3 = · · · = xn−1 = 0 and to zero otherwise. Elementary linear
algebra arguments show that the space of polynomials of degree n−3 would then
contain the element g with

g(x2, . . . , xn−1) =

{

1 for x2 = x3 = · · · = xn−1 = 0
0 otherwise

This is however not true since the unique function g satisfying these constraints
is given by g(x2, . . . , xn−1) =

∏n−1
i=2 (1 − xi), which is a polynomial of degree

n−2. The lower bound on the degree is tight because there is indeed a sequence
of polynomials of degree n−2 that induce Markov kernels which satisfy the
constraints (1) and (2) in the limit. The sequence (Fk)k∈IN of functions, given

by Fk(x2, . . . , xn) := k
(

2(xn − 1) +
∏n−1

i=2 (1 − xi)
)

, tends to −∞ for xn = 0
and the induced Markov kernel satisfies therefore the constraint in equation (2).
Moreover, conditions (1) are also satisfied.

This shows that the OR gate induces a joint measure that is in M1 when
considered with respect to the correct causal order. By inverting input and
output one can see that this is also true for an AND gate. The results above
show that for n ≥ 4 the set M1 is not invariant with respect to a reordering
of n variables and kernels in K1 can lead to joint distributions defining kernels
which are in Kn−2 but not in Kn−3. This implies that our proposed algorithm
can in principle identify the output of an OR/AND gate as the effect and its
random inputs as causes whenever the number of inputs is at least 3, provided
that the number of data points in the sample is large enough to allow a reliable
estimation of the joint measure.
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4 Toy and real-world data experiments

To test our proposed algorithm, we sampled toy data with 3-bit inputs and 1-bit
output of a noisy OR gate. The Markov kernel of an n-bit leaky noisy OR gate
can be generalized by P (Xn+1 = 1 |x1, . . . , xn) = (1 − r)(1 − qx1+···+xn) + r
with q ∈ [0, 1] and4 r ∈ [0, 1]. Repeated experiments have shown that in case
of appropriate sample size5 our algorithm can identify the output as the effect
reliably.

In particular, we demonstrate here an experiment with a dataset of 105 points
where the inputs are strongly correlated6. We observed in our example a quite
balanced correlation structure7. We check that no conditional independence
are present and the IC provides a complete undirected graph as result and is
incapable of learning anything about causal directions. When applied our plMK
algorithm, the most plMK yields 4 distinct joint measures Pi (i = 1, . . . , 4),
depending on which of the 4 variables Xi appears at the end. According to both
the Scheffé tournament and the log-likelihood score, P4 achieves the best fit to
the data. Hence we can indeed identify X4 as output and obtain a useful hint
about the true causal order. The positive results with OR/AND gates should
not suggest that our method could also identify outputs/inputs generated by all
imaginable logical gates. On the other hand, some complex gates like parity, for
instance, are much more unlikely to be a model for causal relations in real-life.

A weakness of our algorithm is the 2n computational dimension and the n!
search space. For large n, a straightforward implementation is very expensive,
time consuming and thus only feasible on structures with few variables. The
plMK algorithm could be nevertheless helpful in considering small dimension
problem, e.g. exploring local structures, in particular, if there are very few con-
straints of independence available. Our results were positive in the sense that
for large samples the algorithm has indeed generated reasonable causal struc-
tures even on data sets without any independent constraints. In the following, we
make use of a real-world dataset to demonstrate how one can benefit from the
advantages of both IC and plMK algorithm. We propose to combine them and
consider our plMK algorithm as an extension for the conventional constraint-
based IC algorithm. A pre-selection of causal hypotheses via IC may reduce the
search space for plMK drastically. Our inference rule can distinguish between
causal graphs that generate the same set of stochastic dependence. The con-
ventional constraint-based approach tends to prefer directed graphs with small
number of arrows. Our inference rule can additionally prefer those hypotheses
where the causes influence their effect in a simple manner.

4q can be interpreted as specifying the probability of suppressing the input 1; r can be
interpreted as a spontaneous inversion of the truth assignment at the output.

5For relatively independent inputs, we need a moderate sample size of 200 − 500. In case
of strongly correlated inputs, the sample size required is much larger.

6The variable X1 is sampled according to an unbiased distribution. X2 is with probability
0.4 given by the inverse of X1 and with probability 0.6 given by uniform noise. X3 is the
output of a 2-bit noisy OR gate (q=0.2, r=0.4) with inputs X1,2. Then we feed a 3-bit noisy
OR (q=0.2, r=0.3) with X1,2,3 as inputs and get X4 as the output.

7It is “balanced” in the sense that all correlation coefficients are between [0.12, 0.19].
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Fig. 1: Graphical representation of the causal hypothesis (CPS data) generated
by PC (left), extended with the plMK algorithm (right).

We study causal relations between sex (SEX), immigrant status (I-STATUS),
educational level (E-LEVEL), and annual income (INCOME)8 with a real dataset
from current population surveys (CPS) 1995, containing 112164 records (age
16 and over). We assume that gender, immigrant status and educational level
affect the income, not vice versa. The causal hypotheses generated by the plMK
algorithm were indeed consistent with this prior knowledge.

If we apply PC to CPS data, the result (Fig. 1, left) is incapable of making
any statement about the orientation of the causal connection between E-LEVEL

and INCOME, which means that a causal arrow from INCOME to E-LEVEL cannot
be excluded. The plMK algorithm is here more specific since it allows only
INCOME as the effect, i.e. the arrow from INCOME to E-LEVEL is excluded.
Note, however, that plMK is in other respects less specific than PC since it
cannot specify the structure of first three variables in the ordering. Recall, for
instance, that the results of plMK did not show that SEX is not an effect of any
other variables; the latter statement is only consistent with the class of preferred
causal structures. Combining PC with the plMK algorithm we may then orient
the edge from E-LEVEL to INCOME as done in Fig. 1, right. This shows that
a combination of PC and plMK leads to the intuitively reasonable result that
INCOME is not a cause of any other variable and SEX is not the effect.
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