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Abstract. We propose a method to evaluate the complexity of probabil-
ity measures from data that is based on a reproducing kernel Hilbert space
seminorm of the logarithm of conditional probability densities. The mo-
tivation is to provide a tool for a causal inference method which assumes
that conditional probabilities for effects given their causes are typically
simpler and smoother than vice-versa. We present experiments with toy
data where the quantitative results are consistent with our intuitive un-
derstanding of complexity and smoothness. Also in some examples with
real-world data the probability measure corresponding to the true causal
direction turned out to be less complex than those of the reversed order.

1 Introduction

First, let us sketch the basic idea of our causal inference rule. Given a joint dis-
tribution on n variables, all the conditional distributions that appear in the fac-
torization of the joint measure P (x1,. . ., xn)=P (x1)P (x2|x1) . . . P (xn|x1,. . . ,xn−1)
will typically be smoother if the order of the factorization X1, . . . , Xn coincides
with the causal order, in the sense that there is no pair (Xi, Xj) with i < j such
that Xj is a cause of Xi. In some cases, this approach could be very useful, in
particular where the conventional constraint-based inference rules (e.g. [1, 2])
fail. In particular, our inference rule can provide some hints about causal di-
rection between only two observed variables1 (see [3]) where constraint-based
approaches are not capable. How to quantify smoothness and simplicity of a
conditional distribution concerning causal asymmetry is herewith of vital im-
portance. In this paper, we propose to measure the complexity of a distribution
by a seminorm of the function which describes the logarithm of the probability
distribution. The function is an element of a reproducing kernel Hilbert space
(RKHS) and its seminorm can be computed by usual kernel methods. In con-
trast to common machine learning applications, the complexity measure here
plays not only the role of a regularizer to avoid the overfitting of finite data. It
is rather considered as an interesting quantity in its own right since it should
provide hints on the causal direction. For this purpose, it is important to chose
a definition of complexity which is well-behaved in some respects.

1It is to mention that we do not intend to treat the problem of confounding on assessing
causality in the current paper and assume there are no hidden common causes in our setup.
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2 Measuring complexity by Hilbert space seminorms

Let P be a measure2 on some probability space X , H a Hilbert space of real-
valued functions on X containing the set of constant functions. We define the
complexity measure on the space of distributions on X by C(P ) :=min{‖φ‖2

∣

∣φ ∈
H with P (x)=exp(φ(x)− ln zφ), with the partition function zφ :=

∑

x exp(φ(x)).
Here ‖.‖ denotes an arbitrary seminorm on H given by a positive semidefinite
bilinear form B :H×H→R satisfying ‖1‖2 =1, where 1 is the function having
constant values 1. One can see that C(P ) = ‖Q(lnP )‖2, where Q denotes the
projection perpendicular to the space of constant functions with respect to B.
We have proved3:

Lemma 1 Let H1, H2 be spaces of functions on X1, X2, respectively. Let C1, C2

be complexity measures on the probability distributions on X1, X2, respectively,

defined by the corresponding seminorms in H1, H2. Let P be defined by a product

of measures P1, P2, i.e., P (x1, x2) = P1(x1)P2(x2) for all x1, x2. If a complexity

measure C on the distributions on X is based on the seminorm of H := H1⊗H2

with ‖a ⊗ b‖ := ‖a‖ ⊗ ‖b‖, the complexity of the product measure satisfies the

additivity rule: C(P ) = C1(P1) + C2(P2).

Now we introduce the complexity measure of conditional probabilities. Let X ,
Y be the respective value sets of random variables X, Y , and PX,Y be a joint
distribution on X ×Y. We define the complexity C(PY |X) of the corresponding
conditional distribution PY |X as

min
{

‖φ‖2
∣

∣

∣
φ ∈ H with PY |X(y|x)=exp(φ(x, y) − ln zφ(x))

}

, (1)

with the partition function zφ(x) :=
∑

y exp
(

φ(x, y)
)

. The complexity of a
conditional distribution can also be given in a more explicit form: C(PY |X) =
‖(id ⊗Q2)(lnPY |X)‖2, where “id” denotes the identity map. We have shown:

Lemma 2 Let X and Y be stochastically independent with respect to the joint

measure P , i.e., PY |X(y|x) = PY (y). Let C be a complexity measure based on

the Hilbert space H = H1 ⊗H2 and C2 be based on the seminorm of H2. Then

we have C(PY |X) = C2(PY ).

This lemma is essential, if one intends to compare the complexity of marginal
probabilities PY to conditional probabilities PY |X . The intention behind the
comparison is the following inference principle: Having factorized a joint mea-
sure PX,Y into PY |XPX and PX|Y PY based on the both possible hypothetical
causal orders, one calculates the sums of the complexity C(PY |X) +C(PX) and
C(PX|Y ) + C(PY ). We attempt to consider these sums as the “total com-
plexity” of the causal models X → Y and Y → X, respectively and prefer

2Let us ignore issues of sampling for the moment and assume that a probability distribution
P of X is given. For the sake of convenience, we assume that the value set X of X is finite.

3All the technical details and proofs will be provided in a forthcoming full paper.
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the causal direction that corresponds to a smaller total complexity. For do-
ing so, it is crucial that C(PY ) and C(PY |X) are comparable and that we have
C(PY |X)+C(PX) 6= C(PX|Y )+C(PY ) in the generic case. The following lemma
provides some deeper understanding why this is the case.

Lemma 3 Given the assumptions above, following inequalities hold: C(PX,Y )≥
C(PY |X)+C(PX)+C(R)−2

√

C(PX)C(R) and C(PX,Y ) ≤ C(PY |X)+C(PX)+

C(R)+ 2
√

C(PX)C(R), where R is the following probability measure on X: Set

R(x) := c ·zf (x) with an appropriate normalization factor c and the partition

function zf (x)=
∑

yexp(f(x,y)) which is derived from f := (id ⊗Q2)(lnPY |X).

Note that in high dimensional spaces the angle between two vectors is typically
close to 90o. We have then C(PX,Y ) ≈ C(PY |X)+C(PX)+C(R). In other words:
The complexity of the joint measure is typically the sum of the complexities of
the conditional probabilities and the complexity of a measure defined by the
partition function. The basic intuition behind our inference rule is that simple
causal mechanism may generate conditionals PY |X which are simple up to a

rather complex X-dependent normalization constant, i.e., the partition function.
Then the joint distribution can also be complex even when PX is simple due to
the additional complexity of the partition function. Moreover, also PX|Y may
then be rather complex.

3 Implicit calculation of seminorms using kernels

We have shifted the problem of defining the complexity of distribution into
the definition of seminorms. In this section, we rewrite our definition such
that seminorms can be calculated in an implicit way by kernels. With the
so-called “kernel trick” different seminorms can be chosen by simply replac-
ing the kernel (see e.g. [4]). Let k : (X × Y) × (X × Y) → R be a posi-
tive definite symmetric function and X × Y the probability space considered.
Let H be the Hilbert space spanned by the functions k((x, y), .) with the in-
ner product 〈k((x, y), .), k((x′, y′), .)〉 = k((x, y), (x′, y′)). Then we may rep-
resent the functions φ in Eq. (1) by φ(x, y) :=

∑n

j=1 cjk((xj , yj), (x, y)) =
〈
∑n

j=1 cjk((xj , yj), .) , k((x, y), .)
〉

with appropriate coefficients cj and points

(xj , yj). Since (x, y) 7→ ψ(x, y) = k
(

(x, y), .
)

∈ H defines a non-linear map
into the feature space H we may interpret the right term in the dot product
of the equation above as the feature vector associated with the point (x, y)
and the left term as the vector of sufficient statistics. We will in the fol-
lowing use kernels that are given by the sum of two distinct kernels k1, k2

k := k1 + k2, i.e., k defines a feature space that is a direct sum of the fea-
ture spaces H1 and H2 defined by k1 and k2, respectively. Our seminorm will
then be given by the norm of the first space: ‖.‖2

H := ‖.‖2
H1

. The idea of us-
ing a seminorm is that the space H2 contains extremely simple functions (for
instance polynomials of low degree) that should not contribute to the complex-
ity measure at all. Let PY |X be a conditional probability measure, given by
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P (y|x)=exp
(
∑n

j=1 c
(1)
j k1((xj , yj), (x, y))+

∑n

j=1c
(2)
j k2((xj , yj), (x, y))−ln zc(x)

)

with the appropriate partition function zc(x). The complexity C(PY |X) is then

defined by the minimum of
∑n

j,j′=1 c
(1)
j c

(1)
j′ k1

(

(xj , yj), (xj′ , yj′)
)

over all vectors

c = (c
(1)
1 , . . . , c

(1)
n , c

(2)
1 , . . . , c

(2)
n )∈R

2n for which the equation above holds.
In order to define a seminorm that is multiplicative on tensor product vectors

we choose k as the product k1((xj , yj), (xj′ , yj′)) = k
(1)
X (xj , xj′) k

(1)
Y (yj , yj′). To

achieve that the constant function 1 has seminorm 1 we proceed as follows.

Define the matrix KX := k
(1)
X (xj , xj′) and calculate its inverse K−1

X . Let c :=
(K−1

X )1. Now we have to renormalize such that 〈c |KX c〉 = 1, i.e., the sum of all

entries of K−1
X are 1. The same procedure is also to applied to k

(1)
Y . To calculate

the complexity of a distribution from a finite data set we employ the regularized
maximum likelihood estimation to fit the observed data points. In contrast to
the usual methods we prefer exponential models to calculate the fit in our setting.
We recall that, without regularizers, the method would read as follows. Given a
family of conditional distributions by Pφ(y|x) = exp

(

〈φ|ψ(x, y)〉− ln zφ(x)
)

and
N data points (xi, yi), the maximum likelihood estimation selects φ by

max
φ

{ 1

N

N
∑

i=1

(

〈φ|ψ(xi, yi)〉 − ln zφ(xi)
)

}

. (2)

In order to avoid overfitting we add a regularizer

max
φ

{ 1

N

N
∑

i=1

(

〈φ|ψ(xi, yi)〉 − ln zφ(xi)
)

− ε‖φ‖
}

. (3)

We choose the norm itself and not its square (as opposed to our complexity
measure) in agreement with the choice in [5]. The authors propose to use a
value of ε that is proportional to 1/

√
N . Note, as an aside, that the regularized

maximum likelihood estimation for unconditional distributions can also be in-
terpreted as maximizing the entropy of the distribution subject to expectation
values of ψ(X,Y ) that coincide with the observed means of ψ(X,Y ) up to an
error of ε (see [5]). For the experiments we use a sum of the Gaussian ker-

nel kσ((x, y), (x′, y′)) = exp(−‖(x,y)−(x′,y′)‖2

2σ2 ) and a modified polynomial kernel

ka,b((x, y), (x
′, y′)) = ( 〈x·x

′〉
ax

+bx)( 〈y·y
′〉

ay

+by)2, where (x, y), (x′, y′) are arbitrary

value vectors of some vector-valued variables (X,Y ). The additional scaling pa-
rameters a, b is used to ensure a numerically stable training. The idea behind
this choice of kernels is the following: one checks easily that the second ker-
nel induces a space of functions spanned by the monomials 1, x, xy, xy2, y, y2.
Such terms are considered as so elementary that they should not contribute to
the complexity measure. In particular, we can then obtain Gauss distributions
whose expectation value and variance changes linearly with the given variable
X. An important property is furthermore that it induces a space which contains
functions that tend to minus infinity. This is needed for the description of prob-
ability measures that vanish asymptotically in the infinity. The Gaussian kernel
allows us to fit all local structures of the distribution.
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Our experiments suggest that we have to learn appropriate values σ for the
Gaussian kernel by optimizing Equation (3), otherwise we did not obtain rea-
sonable fits. Clearly, we cannot directly compare the complexity values corre-
sponding to kernels with different σ. However, we may define the complexity by
the minimum over all seminorms squared within some given family of RKHSs.
Denoting by Hi the Hilbert space as the one given by the kernel ki we may
define C(P ) by C(P ) := infi∈I{Ci(P )}, where Ci refers to the seminorm in Hi.
In order to ensure the additivity with respect to product measures in product

spaces for the redefined C we need to define a family of spaces by H(1)
i ⊗H(2)

j .
Due to a combinatorial explosion such an optimization will only be feasible for a
small set I and few tensor components. If we run the optimization procedure in
Eq. (3) over all Hilbert spaces (i.e., all reasonable σ) the procedure will choose
the vector φ from the Hilbert space that leads to the least norm among all those
that lead to the same value in the non-regularized optimization of Eq. (2). We
shall therefore consider the optimum of Eq. (3) over all kernels taken from a
given family as an estimation of the minimal norm of the distribution over all
considered Hilbert spaces.

4 Experiments with toy and real-world data

The following experiments should show the intuitive meaning of our complex-
ity measure and that it seems to make sense for inferring the causal direction
between two variables. Our idea is that stochastic dependence between “cause”
and “effect” which is generated by “simple mechanism” should typically lead to
“simple expressions” for P (effect|cause) but will not necessarily generate simple
expressions for P (cause|effect). The latter is rather an abstract mathematical
expression and does not directly describe the “physics” of the causal mechanism.

First, we sample 1000 data points from different distributions. P1 is a stan-
dard Gaussian; P2, P3, P4, P5 are mixtures of 2 Gaussians; P6, P7, P8 are mixtures
of 3, 4, 5 Gaussians. P9 is a mixture of a Gaussian and a gamma distribution.
P10 is a single gamma distribution, P11, P12 are mixtures of 2, 3 gammas. As
expected (Fig. 1.), the complexity of a single Gaussian is 0. A single gamma dis-
tribution is also very smooth4. Here, the complexity value is increasing with the
number of components. This holds even for the unimodal mixture P2, P11, P12.

Since the causal inference problem was the motivation for our complexity
measure, its performance with respect to real-world data is be the best criterion
for judging whether it seems appropriate or not. We have performed experi-
ments with data sets from the Current Population Survey (CPS) 2001 on the
relation between “Sex” (binary variable) and “Income” (continuous variable) in
the US. Statistical methods show that income and gender are indeed correlated.
One can exclude that the personal income influences the gender, whereas the
reverse causal direction makes sense. We found that the distribution of the in-
come averaged over both genders is more complex than the distribution for both

4We observe slightly larger complexity values for a gamma distribution than for a Gaussian.
We would like to leave open whether this property is desirable.
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Fig. 1: 12 toy data sets sampled by distributions P1, ..., P12 (see text). The dots
indicate the observed relative frequencies, the solid lines the estimated densities.
The calculated complexity values are shown below each figure.

genders separately. Likewise, the conditional probability of the income given
the gender is less complex than the marginal distribution. Having taken 10%
from the total 13.803 data points randomly, we found the following complexity
values: C(PSex) = 0.0000, C(PIncome|Sex) = 0.4632 and C(PIncome) = 0.6725,
C(PSex|Income) = 0.0000, i.e., the sum of the complexities corresponding to
the true causal direction is indeed smaller. Using the same data set, we con-
sider another example where a continuous variable causally influences a binary
variable. We examine the continuous variable “Age” and the binary variable
marriage status (“M-Status” takes two values: “never married” or “married,
widowed, divorced or separated”). A 10% sampling shows the following re-
sults: C(PAge) = 0.0023, C(PM-Status|Age) = 0.0012 and C(PM-Status) = 0.0000,
C(PAge|M-Status) = 0.0164. Our inference rule would then favor the causal hy-
pothesis that the age should be a cause of marriage status of a person. It
should be stressed that the relevance of the complexity in our applications lies
rather in comparing the values of both hypothetical causal directions than in
their absolute values. Further experiments with other real-life data show that
our complexity measure works quite reliably in case of not too weak correlation
between cause and effect. Nevertheless, we do not claim to have the right com-
plexity measure with regard to causal reasoning, however RKHS-norms are a
flexible way of constructing complexity measures having nice properties.
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