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Abstract.

LS-SVM aims at solving the learning problem with a system of linear equa-
tions. Although this solution is simpler, there is a loss of sparseness in the
feature vectors. We present in this work a new method, A — LSSV M,
which uses the neural model Adaline to solve the LS-SVM’s linear system
while automatically finding the support vectors. The proposed approach
is compared with other methods in literature to impose sparseness in LS-
SVM: Pruning, LS® — SV M, Ada — Pinv and IP — LSSV M. The exper-
iments, performed on three important benchmark databases in Machine
Learning, show that all sparse LS-SVMs have an accuracy near SVM, but
differ in training time and support vectors found.

1 Introduction

Least Squares Support Vector Machine (LS-SVM) [1] is a learning machine that
corresponds to a modified version of Support Vector Machine (SVM) [2]. The
problem generated by LS-SVM can be solved with a system of linear equations,
which is less complex than the quadratic programming used in SVM. Although
this solution is simpler, there is a loss of sparseness in the feature vectors, since
most Lagrange multipliers are non zero, what leads to all training data being
considered as support vectors. As a consequence of this trade-off between sparse-
ness and complexity, many works on LS-SVM are focused on improving support
vectors representation in the least squares approach. Adaline neural model [3]
is an appropriate proposition to solve the LS-SVM’s linear system, which isn’t
positive definite, and has a not easy solution using common iterative methods.

We introduce in this work a new method, called A — LSSV M, in order
to impose sparseness in LS-SVM. This sparse LS-SVM uses a modified version
of Adaline to iteratively solve the LS-SVM’s linear system and also detect the
support vectors automatically. A — LSSV M is compared with other sparse LS-
SVM classifiers presented in literature on three important benchmark databases
in Machine Learning [4]: Pima Indians Diabetes, Tic-Tac-Toe and Ionosphere.
Comparing with other approaches, the proposed method has the advantages that
does not need to firstly solve a complete LS-SVM system to obtain a solution,
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because it runs iteratively. Despite this fact, the modified version of Adaline
used at A — LSSV M is very easy to be implemented.

The remainder of this paper is organized as follows. In Section 2, it is pre-
sented the LS-SVM formulation. In Section 3, A — LSSV M is introduced and
the other sparse LS-SVMs are described. After that, it is shown in Section 4
the experiments on three UCI databases, by applying SV M [2], Pruning [5],
LS%? - SV M [6], Ada — Pinv [7], IP — LSSV M [8] and A— LSSV M with RBF
kernel. Finally, the last section corresponds to the conclusions of this work.

2 Least Squares Support Vector Machine

Given the training set {x;,y;}7,, with input x; € ®™ and corresponding binary
output y; € {—1,+1}, LS-SVM maps the input data in a high dimensional space,
called feature space, to build a linear separation hyperplane f(x) = 0, such that

wlp(x) +b=0 (1)

where w is the weight vector, b is the bias term and (.) is the mapping function
applied to data to represent them at the feature space.
The primal problem of the LS-SVM is defined as

N
1 1
mingpe Jp(w,be)= §wTw +75 Z e (2)
i=1

subject to
yilwlo(x;)) +b)=1—-¢;, i=1.,N
where v controls the two terms of Jp(w, b, e) and e; is the error of pattern x;.
We apply the Lagrangean, in order to incorporate the equality constraints of
the primal problem in the dual cost function, using the Lagrange multipliers a.
Deriving the Lagrangean problem with respect to the primal and dual variables
and setting the result to zero, which is needed to find its saddle point, gives

Zﬁil QY = 0 (3)
oSy Y iyse(xi) To(x) + 1)+ yb = 1.

We can describe (3) like a linear system AX = B where

T
a<[ =[] wan= 0] @

The matrix H in (4) obeys the Mercer Theorem [9], that deals with the
conditions that a given function K(x;,x;) must have to be a kernel function.
Therefore H is positive definite, the matrix A is not. The solution of the system
of linear equations (4) is the same of the primal problem (2).

Once we have got the values of the Lagrange multipliers, the output of the
LS-SVM can be calculated like the SVM

N
f(x) = sign[z oy K (x,%;) + b]. (5)
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3 Sparse LS-SVMs

The proposed method, A — LSSV M, is introduced now. After that, four sparse
methods existent in literature are presented: Pruning, LS2SV M, AdaPinv and
IP—LSSV M. Other sparse approaches for LS-SVM can be found at [10, 11, 12].

31 A-LSSVM

This sparse LS-SVM classifier uses a modified Adaline [3] to perform the LS-
SVM training process. Considering X as the input matrix and Y the output
one, each sample z; and y; in a row, the modified gradient descent training is

1. The weights are started randomly, and the output is Y3, = W X.

2. The weights are updated as Wy, = Wy_; + n(E;)X, where E;, = Dy, — Y},
is the error of all training data X at iteration k.

3. If the error of X(;) at iteration k is smaller than a given parameter, X(;) is
eliminated together with its correspondent weight Wy, ;) and output Yy ;.

4. The training process continues until a stopping criterion is reached.

After the modified Adaline is used to solve the LS-SVM system (4), where
the non-eliminated patterns are the support vectors, and their a values are got,
the solution is obtained as described in (5).

3.2 Pruning

This method, which makes LS — SV M capable to choose a subset of the training
data as support vectors, was suggested in [5]. It was proposed the usage of a
pruning technique [13], where training vectors x; are eliminated according to
the absolute value of the Lagrange multiplier, |«;|, associated with them.

The Lagrange multiplier elimination is performed recursively, in a way that
in each iteration a small quantity of vectors is eliminated. It also uses a subset of
the training data as a validation set. The stop criterion, which determines when
the reduction of the training set is finished, is the decreasing of the machine
accuracy into the validation set.

3.3 LS?-SVM

This method was proposed in [6]. It is a two-phase strategy which automatically
eliminates the irrelevant vectors, in order to detect the support vectors. The first
phase is done by reducing the matrix A of the linear system (4) to the echelon
form with a column elimination, where values that are lower than a specified
threshold are set to zero, without a corresponding row elimination.

Because some values have been set to zero, the resulted matrix has columns
with all zero elements, corresponding to linear dependent vectors, that must be
discarded. By the fact that all rows remain, the new matrix A is non-squared,
so the linear system (4) is solved using the pseudo-inverse function X = ATB.
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3.4 Ada — Pinv

This method was introduced in [7], as another manner to impose the sparseness
in LS-SVMs using also two phases. The first one is the use of the neural model
Adaline [3] to perform the LS-SVM training process. The Lagrange multipliers
resulted from this process are sorted according to their absolute value |a;|. The
columns of matrix A of the linear system (4) are removed according to this
value, because smaller |a| values mean correct classification. Notice that only
the columns are removed, remaining all the rows, like LS2SV M does.

The difference of this method compared to the last one is that there is no
need for a process of matrix reduction to the echelon form; it is only needed to
train a LS-SVM using Adaline, which is easier to implement. Once the column
elimination is performed, the solution is obtained using X = ATB.

3.5 IP—-LSSVM

This method was proposed in [8], and uses a new relevance criterion to select
support vectors: the Lagrange multiplier a; associated to each training point,
and not its absolute value |;|, that is often used in literature [1]. TP — LSSV M
uses the inverse function X = A~!'B in the first step to solve the system of
linear equations represented by (4), the same way LS-SVM does.

The new relevance criterion is used in the second phase in order to eliminate
some columns of the original matrix A and build a non-squared matrix. Like
occurs in LS% — SV M and Ada — Pinv, the rows of A are not removed, because
its elimination leads to a less constrained problem to be solved, with a worst
solution. Once the column elimination was performed, the solution of the linear
system (4) is got with X = ATB.

4 Results and discussion

In this section it’s presented the results of the experiments made on three UCI
databases [4], Pima Indians Diabetes, Tic-Tac-Toe and Ionosphere using the
sparse classifiers with RBF kernels.

All the classifiers were implemented on Matlab 6.1, and no toolbox was
used. Each result corresponds to a mean value of 10 rounds of experiments,
each round with a different random combination of training and testing data.
The parameters used for SVM in the experiments were got from [11].

From Tables 1 to 3, we can observe that TP — LSSV M is the fastest method
on three databases, followed by Pruning and LS? — SV M. Ada — Pinv is the
slower one in all experiments. A— LSSV M is faster than Ada— Pinv, but slower
than the other sparse methods. TP — LSSV M has a training time 4 to 20 times
smaller than SV M, while Ada — Pinv is 4 to 40 times slower than SV M. The
training accuracy of all classifiers are very similar, except by the result of SV M
in Table 2. Tables 1 and 3 show A — LSSV M has the best testing accuracy. But
for all databases the sparse LS-SVMs presented very similar testing accuracies.
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Table 1: Pima indians diabetes

Method Training Training Testing Support
time (secs) accuracy accuracy vectors
SVM 695.9+87.3 | 0.75+0.01 | 0.76 £0.01 | 0.71 £0.01
Pruning 36.2+11.7 0.74+0.02 | 0.74+0.02 | 045 £0.11

LS? - SVM 79.00£0.36 | 0.75£0.01 | 0.744+0.03 | 0.74 £0.00
Ada — Pinv 24273 +15.0 | 0.75£0.01 | 0.74+£0.02 | 0.75 £ 0.00
IP—-LSSVM | 3525+0.37 | 0.76+£0.01 | 0.75£0.03 | 0.75 £ 0.00
A—-LSSVM | 1584.2+49.0 | 0.76 £0.01 | 0.76 = 0.03 | 0.73 +0.12

Table 2: Tic tac toe

Method Training Training Testing Support
time (secs) accuracy accuracy vectors
SVM 1276.9+12.8 | 0.65+0.01 | 0.96 +£0.01 | 0.71 £ 0.00
Pruning 116.1£29.2 | 1.00£0.00 | 0.96 £0.04 | 0.22 +0.18

LS? —SVM | 543.22+2.45 | 1.00+0.00 | 0.99 +0.01 | 0.84 £0.00
Ada — Pinv 3762.0£79 | 1.00£0.00 | 0.98+0.00 | 0.75 £ 0.00
IP—-LSSVM | 67.36£0.42 | 1.00+0.00 | 0.99£0.01 | 0.75 £ 0.00
A—LSSVM | 7224£59.0 | 0.97+£0.02 | 0.99+0.01 | 0.70 £ 0.05

When we look at the number of support vectors detected by the sparse LS-
SVMs, except Pruning, compared with the ones gotten by SV M, Tables 1
and 3 present similar results, which differ by no more than 4%. Considering the
support vectors found, A— LSSV M presented values more similar to SV M ones
than others. On Tic-tac-toe database, the number of support vectors detected
by LS? — SV M is considerably higher than SV M, while Pruning detected less
support vectors than SV M in all databases.

Table 3: Tonosphere

Method Training Training Testing Support
time (secs) accuracy accuracy vectors
SVM 24.96 £4.17 | 1.00 £ 0.00 | 0.95+0.02 | 0.46 £0.01
Pruning 10.9+9.7 1.00+£0.00 | 0.93£0.03 | 0.35£0.09

LS?>-SVM | 1385+0.19 [ 0.98+0.01 | 0.93+0.02 | 0.50 £ 0.02
Ada — Pinv 455.0+£27.7 | 1.00£0.00 | 0.94+0.02 | 0.50 £0.00
IP—-LSSVM | 5.96+0.02 | 1.00£0.00 | 0.95+0.02 | 0.50 £ 0.00
A—-LSSVM 157.9+5.3 | 0.984+0.02 | 0.96 £0.02 | 0.43+0.03
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5 Conclusions

This work introduced a sparse LS-SVM classifier that is based on a modified
version of Adaline to iteratively solve the LS-SVM’s linear system and also to
detect the support vectors automatically. The experiments performed indicate
that all sparse LS-SVMs have a testing accuracy near SVM, but differ in the
number of support vectors found and in the time spent on training.

IP — LSSV M is the fastest method while Ada — Pinv is the slower one.
The proposed method, A — LSSV M, besides being easy to implement, is the
only one that does not need to firstly solve a complete LS-SVM system to reach
the solution, because it is iterative. Pruning and LS? — SV M differ more with
respect to the number of support vectors, when compared with SV M. All sparse
LS-SVMs were able to deal with the binary classification problems given by the
benchmark data.
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