ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

Neural Rewards Regression for Near-optimal
Policy Identification in Markovian and Partial
Observable Environments

Daniel SchneegaB™?, Steffen Udluft!, and Thomas Martinetz>

1- Siemens AG, Corporate Technology, Learning Systems,
Otto-Hahn-Ring 6, D-81739 Munich, Germany
2- University of Luebeck, Institute for Neuro- and Bioinformatics,
Ratzeburger Allee 160, D-23538 Luebeck, Germany

Abstract. Neural Rewards Regression (NRR) is a generalisation of Tem-
poral Difference Learning (TD-Learning) and Approximate Q-Iteration
with Neural Networks. The method allows to trade between these two
techniques as well as between approaching the fixed point of the Bellman
iteration and minimising the Bellman residual. NRR explicitly finds a
near-optimal @Q-function without an algorithmic framework except Back
Propagation for Neural Networks. We further extend the approach by a
recurrent substructure to Recurrent Neural Rewards Regression (RNRR)
for partial observable environments or higher order Markov Decision Pro-
cesses. It allows to transport past information to the present and the
future in order to reconstruct the Markov property.

1 Introduction

In industrial applications, Reinforcement Learning [1] problems are usually very
complex, of high dimensionality, and just few data is available or the learning
methods make high demands on time and space resources. Therefore, solving
such tasks with powerful function approximators like problem-adapted architec-
tural-designed Neural Networks (NN) [2] and data-efficient approximation tech-
niques are obvious and promising strategies. Our Neural Rewards Regression
approach is motivated by Kernel Rewards Regression (KRR) [3] for data-efficient
RL. The RL problem is considered as a regression task fitting a reward function
on the observed signals, where it is chosen from a hypothesis space, such that
the Q-function can be gained out of the reward function. NRR is formulated
similarly. The usage of shared weights with Back Propagation (BP) [4] allows
us to restrict the hypothesis space appropriately.

In RL the main objective is to achieve a policy, that optimally moves an
agent within an environment, which is defined by a Markov Decision Process
(MDP) [1]. An MDP is generally given by a state space S, a set of actions A
selectable in the different states, and the dynamics, defined by a transition prob-
ability distribution Pr : S x A xS — [0, 1] depending on the current state s, the
chosen action a, and the successor state s’. The agent collects so-called rewards
R(s,a,s") while transiting. They are defined by a reward probability distribu-
tion Pr with the expected reward ER = fR rPgr(s,a,s',r)dr,s,s’ € S;a € A.

301

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

Typically one is interested in maximising the discounting Q-function, defined by
the Bellman Equation

Q"(s,a) = Eg(R(s,a,5) +1Q"(s,7(s)),

over the policy space IT = (S — A) for all possible states s and actions a, where
0 < v < 1 is the discount factor, s’ the successor state of s, and 7 € II the
used policy. The best policy is the one using the actions maximising the (best)
Q-function Q™rt(s,a) = Q(s,a) = Ey(R(s,a,s’) + ymax, Q(s',a’)), that is

w(s) = arg max Q(s,a).

We further define the Value Function over S as V(s) = max, Q(s, a). For details
we refer to Sutton and Barto [1]. In our setting, we assume a discrete set of
actions, while the set of states is continuous and the dynamics probabilistic.

The remaining paper is arranged as follows. In section 2 we introduce NRR
and explain briefly, what the core idea is. We describe, in which way the RL
task is interpreted as a regression problem and how the trade-off between either
the two learning procedures as well as the two optimality criteria is realised.
In section 3 NRR is extended to RNRR to handle higher order MDPs. We
show, how a Recurrent Neural Network (RNN) can be connected with NRR in
a quite simple way and claim, that the architecture is indeed able to reconstruct
the Markov property and increases NRR’s applicability. Finally we consider its
potential to solve the Optimal Control problem on two benchmark tasks in the
context of Markovian as well as partial observable (PO) environments.

2 Neural Rewards Regression

We describe the Q-function for each possible action as Feed-Forward-Networks!
N,(s) = Q(s,a). The reward function to be fitted is hence given as

R(Sa a, S/) = Na(S) - vmz}x Na'(S/)a

where the max-operator has to be modeled by an appropriate architecture. Using
the BP algorithm this problem setting approaches the minimum of the (squared)
Bellman residual over all [observed transitions

l

ZL2+Q Z (84, ai) WV(SiH)—Ti)z‘FQ(B)»

i=1

where 6 are the network parameters and) may be an appropriate regulariser.
The observed r; and s;11 have to be unbiased estimates for their expectations
[5] as the expectation operator is omitted. The error function’s gradient ‘;—g =

2 ZZ 1 Lik (Q(si, ai) — YV (si41)) + -5Q(0) depends on the current Q-function

LA monolithic approach with one network N(s,a) = Q(s,a) which takes the state and
action as input, can also be used.

302

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

and the successor Value Function (fig. 1, the upper part of the network). But to
obtain the fixed point of the Bellman Iteration, which provides better solutions
in most applications [5], one retains y; := r;+vyV (s;4+1) and minimises iteratively

l
L = Z(Q(Si,ai)_Yi)2+Q(9)v

i=1

until convergence of Q). Its gradient is then given as % =2 22:1 Li%Q(si7 a;)+
%Q(G). By resubstituting y; we further obtain the equation system

1
; (Q(si, ai) =YV (siy1) —13) %Q(Si,ai) + %9(9) = 0

whose solution is the fixed point of the (regularised) Bellman Iteration by con-
struction. It can be seen, that both gradients differ only in their direction terms,
but not in the error term. Blocking the gradient flow through the Value Func-
tion part of the network hence reconstructs the latter gradient. Therefore, in
the backwards path of the BP algorithm, the error propagation between the R-
cluster and the V’'-cluster is multiplied by a constant p (see fig. 1). For p =1 we
have the classical Bellman residual minimisation, while the setting p = 0 leads
to the Bellman Iteration. Any other compromise is a possible trade-off between
these two error definitions [6]. The optimality is each defined as the solution of
the more general equation system

!
d d
> (Qsiai) = AV(sit1) — 1) 20 (@i ai) = pyV(siv1)) + 22(0) = 0.
i=1
A closer look at the approach reveals the similarities to TD-Learning [1]. Com-
bining p = 0 and an incremental learning scheme, NRR is identical to that
classical approach. But the architecture allows us to apply the whole palette of
established learning algorithms for NNs [7].

3 Recurrent Neural Rewards Regression

If e.g. in PO environments, the Markov property is not fulfilled, but can be
reconstructed by using information from the past, it is desirable to memorise
necessary observed information. One possibility is to apply RNNs [2] to simulate
the underlying dynamical system (see fig. 1, lower part). This is typically done

by internal states x;,z:,t € i —7,---,i+ 1 and their transitions recursively
defined by

Xy = tanh(Fst + Jzt—l)

zZ: = Gat + HXt

using (linear) operators F,G, H,J. Applying a matrix M, mapping to the ex-
ternal state, the successor state has to be reconstructed by approaching

||MZt *St+1||2 = min.

303

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

In doing so the internal states x; and x;y; can be used as inputs for NRR,
which now may work on an MDP, if 7 is appropriately large. The weighting of
learning the dynamical system in comparison with solving the RL problem can
be controlled by a factor u similarly to p (see fig. 1, lower part).

Neural Rewards Regression

control

gradient flo\o\'/'

Fully Stochastic
Reinforcement
Learning

Each circle represents a
cluster of neurons
connected by weight
matrices. The clusters R,

Q, and V' are the
respective function values
and consist each of one
neuron only. The bright
n grey input clusters are
used alternatively for the
standard NRR approach.
n The (X) operator switches
between the action-
dependent Q-functions,
while the max-operator
arranges for the choice of
the maximal successor Q-
function. Dotted backward
arrows are drawn, where
the gradient flow may be
controlled by multiplying
. | the propagated error with
the respective factor.

Present

Fig. 1: The RNRR architecture.

Interestingly, the NRR architecture allows us to use only one RNN for both
the @-function and the Value Function. Note, that these RNNs are indeed able
to approximate deterministic dynamical systems arbitrarily precisely [8], but
this is not the case for stochastic dynamical systems. Fortunately, this is not a
true restriction as the construction of the internal state can just be seen as the
transformation into an appropriate feature space for a full stochastic Reinforce-
ment Learner, built from past and present observations. In the deterministic
case, this feature space is identical to the perfect description of all information
determining the future, while in the general stochastic case the internal state has
to be designed in order to forecast the expected future. Therefore one includes
an autonomous future part, similarly to [2], where external states are forecasted
without using observations from the Markov Process as

x¢ = tanh(Nz;_q),t >0+ 1.

This is indeed sufficient as the Markov property can be reconstructed by knowing
the expected future states. By construction of a linear system of these expecta-
tions, we are able to prove the following accordant theorem (in the forthcoming
full paper). Note, that U and U’ are Markov Processes, i.e. S joins states and
action for a certain exploration.

304

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

Theorem 1 Let U = (S, P) be a countable stationary ergodic Markov Process
of order T + 1. Let further be K a Recurrent Neural Network with unfolding
at least of order T and autonomous future extension of v steps. Then U’ =
(X, P") with P' = P'(P,S,X) is a Markov Process of order 1, identical to U,
ice. P(shy|x%) = P(shq|(s5_,,...,8%)), if v — 0o and K is able to reconstruct
the deterministic part of the basic dynamics for all s € S, i.e., K forecasts the
expected future states arbitrarily precisely.

4 Practical Results and Conclusion

We tested NRR and RNRR on two benchmark tasks, the Cart-Pole problem [1]
and the so-called Wet-Chicken problem [9]. We examined both tasks regarding
data-efficiency, their manageability in PO environments, and the influence of the
parameter p. For comparison with the results presented in [10] and [5], we used
the setting as described in [5] for the Cart-Pole problem, with the pole’s angle
0 and its derivation. The reward function was shaped in order to offer more
information about the nature of the problem to the learning method, that is, in
transitions, where the pole is still balanced, we subtracted 29|f,|ax from the reward.
Standard NRR is able to solve the Cart-Pole task perfectly (balancing for at
least 3000 steps), stable, and reproducible with at most 1500 single observations
(including restart transitions) and random exploration. We observed two thirds
successful adaptations with only 80 single observations. For a detailed analysis
see table 1. We further used RNRR with a four-dimensional internal state space,
observing the angle 6 only. Table 2 shows the linear correlation between the
best linear combination of the internal state and the external variables. The
reconstructibility of the full external state is a sufficient condition to recover the
Markov property. Moreover, the Cart-Pole task is fully deterministic apart from
tossing the dice for new starting states. Therefore, the setting of p is not very
important. The most stable results could be achieved with p = 0, but p > 0
leads to successful results as well. Nevertheless, for (near-)deterministic tasks,
it could be advisable to choose a greater p as the learning procedure is then
well controllable and understood, the setting is close to a Supervised Learning
scheme.

Table 1: Successful learning for Cart-Pole (standard and partial observable).
Std., Obs. | 1500 1000 600 200 150 100 80 60 40
Succ. (%) 100 97 94 94 92 74 68 36 6
PO., Obs. | 20000 10000 5000 2000 1000
Succ. (%) 75 40 45 5 5

In contrast, the Wet-Chicken problem is a quite simple, but probabilistic
benchmark RL task. A canoeist has to paddle on a river until reaching a waterfall
at maximal position & = Tpax. If he falls down, he has to restart. The reward
increases linearly with the proximity to the waterfall. Simulated turbulences
make the state transition probabilistic. These turbulences t themselves make a
random walk, such that ¢/ = t+ N(0, ¢). The canoeist has the possibility to drift,

305

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

hold the position, and row back. He has to row back as late as possible and as
early as necessary. The task can be solved as well as with KRR, [3] and achieves
policies with nearly-optimal performance with 10000 observations for p < 0.25.
While for p close to 0 the action changes from drift to row back directly, there is
a wider hold-the-position area for greater p. For p close to 1, the policy tends to
become too risky. In case of stochastic and unobservable turbulences, the two

state variables x and ¢ can be reconstructed quite well (see table 2).
Table 2: Best correlations between internal and external states.
Benchmark Vr. Obs. | Corr. || Benchmark Vr. Obs. | Corr.
Cart-Pole 0 yes | 0.9977 || Wet-Chicken =z yes | 0.9996
0 no | 0.9896 t no | 0.6552

5 Conclusion

The key aim of data-efficiency can be pointed out explicitly. As NRR is moti-
vated by KRR, it works as a batch regression method and uses several regulari-
sation techniques, hence results from Statistical Learning Theory can be applied.
Further, the intrinsic Markovisation of the state space is an important technique
to handle higher order MDPs. The parameter p, the recurrent substructure, and
the usage of different learning methodologies realises a generalisation of certain
RL methods for NNs in various aspects.

References

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, 1998.

[2] H. G. Zimmermann, R. Grothmann, A. M. Schaefer, and Ch. Tietz. New Directions in
Statistical Signal Processing: From Systems to Brain, chapter Identification and Fore-
casting of Large Dynamical Systems by Dynamical Consistent Neural Networks. MIT
Press, 2006.

[3] Daniel Schneegass, Steffen Udluft, and Thomas Martinetz. Kernel rewards regression: An
information efficient batch policy iteration approach. In Proc. of the IASTED Conference
on Artificial Intelligence and Applications, pages 428-433, 2006.

[4] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. Distributed representations. In
Parallel Distributed Processing, pages 77-109, 1986.

[5] Michael G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of
Machine Learning Research, pages 1107-1149, 2003.

[6] Leemon C. Baird III. Residual algorithms: Reinforcement learning with function approx-
imation. In International Conference on Machine Learning, pages 30-37, 1995.

[7] B. Pearlmutter. Gradient calculations for dynamic recurrent neural networks: A survey.
IEEE Transactions on Neural Networks, 6(5):1212-1228, 1995.

[8] A. M. Schaefer and H. G. Zimmermann. Recurrent neural networks are universal ap-
proximators. In Stefanos Kollias, Andreas Stafylopatis, Wlodzislaw Duch, and Erkki
Oja, editors, ICANN 2006: 16th International Conference. Proceedings, Part I, pages
632-640, 2006.

[9] Volker Tresp. The wet game of chicken. Siemens AG, CT IC 4, Technical Report, 1994.

[10] Martin Riedmiller. Neural fitted g-iteration - first experiences with a data efficient neu-

ral reinforcement learning method. In Proceedings of the 16th European Conference on
Machine Learning, pages 317-328, 2005.

306

