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Abstract. Imprecision, incompleteness, prior knowledge or improved
learning speed can motivate interval–represented data. Most approaches
for SVM learning of interval data use local kernels based on interval dis-
tances. We present here a novel approach, suitable for linear SVMs, which
allows to deal with interval data without resorting to interval distances.
The experimental results confirms the validity of our proposal.

1 Introduction

Support Vector Machines (SVMs) are learning machines loosely implementing
the Structural Risk Minimization inductive principle [1]. Our aim in this work
is to extend the SVM to deal with information represented by intervals [2]. The
use of intervals is motivated by several reasons: intervals allow to aggregate
training data and therefore reduce the number of samples in the training set;
they allow to deal with incomplete or imprecise data due to inaccurate or uncer-
tain measurements, or information derived from linguistic assessments, or data
transformed from continuous to discrete values.

The main drawback of Interval Arithmetic [2] is that the interval space does
not inherit the Euclidean structure of the real line, therefore it is impossible to
consider a direct extension of the most usual real norms. However, it is possible
to define a distance: a SVM can build a regression model where coefficients
are interval values [3]. For classification problems a distance can be defined in
the interval space and combine it with a Gaussian kernel [4], or it is possible
to define a nonlinear function being able to deal with intervals on a predefined
feature space. All these methods make use of local kernels; our goal, instead, is
to directly incorporate the interval concept into the SVM, without defining any
particular distance on intervals.

Section 2 briefly recalls the SVM algorithm, while a new formulation, which
give rise to an Interval-based SVM (I-SVM), is derived in Section 3. As the size of
the resulting learning problem is large, a new approach is developed in Section
4, which drastically reduces the I-SVM size and can be interpreted as being
directly based on interval arithmetics. Computational complexity issues and
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an artificial example of the application of I-SVM are described in the following
Section. Finally, conclusions are presented. Due to space limitations, several
details and discussion about experimental results have been omitted but can be
found in the technical report [5].

2 Support Vector Machine Learning

Let Z = {z1, . . . , zp} ∈ (X × Y)p be a training set, with zi = (xi, yi), X ⊂ R
m,

Y = {±1} and let φ : X → F be a feature mapping: F is named feature space
and is endowed with a dot product 〈·, ·〉. Let φ(x) ∈ F be the representation of
x ∈ X , then a linear classifier fw(x) = 〈φ(x),w〉+b can be sought in the space F ,
with fw : X → R, b ∈ R and the class label is obtained by thresholding its output
hw(x) = sign(fw(x)). Let us define β = min

zi∈Z+
〈φ(xi),w〉, α = max

zi∈Z−
〈φ(xi),w〉,

where Z+ and Z− are, respectively, the patterns belonging to the classes labelled
as {+1,−1}. The classifier w with the largest geometrical margin β−α

‖w‖ on a given
training sample Z can be written as wSV M = arg max

w∈F
1

‖w‖ · min
zi∈Z

yi〈φ(xi),w〉.
The SVM original formulation for solving this problem suggests to minimize the
norm ‖w‖ with β − α = 2 and a bias term b is introduced by defining β = b + 1
and α = b−1, the solution resulting in the form fwSV M

(x) =
∑

i αi yi k(xi, x)+b,
where k(x, x′) = 〈φ(x), φ(x′)〉 is the kernel function, and only some αi have non
zero values. In the following, the linear SVM formulation k(x, x′) = 〈x, x′〉 will
be considered.

3 I-SVM: A Convex Optimization Approach

As described in [6], prior knowledge in the form of multiple polyhedral sets
can be introduced into a reformulation of a linear SVM. All points lying in a
polyhedral set can be determined by a general set of linear inequalities, B =
{x|Bx ≤ d} ⊂ R

m with B ∈ R
s×m and d ∈ R

s. By using the Farkas’s theorem,
it can be shown that, given a weight vector w, a nonempty polyhedron B lies
in the half-space {x|w′ · x ≥ 1} if and only if there exists a vector u such that
B′ · u + w = 0, d′ · u + 1 ≤ 0 and u ≥ 0. Restricted to intervals, like in our case,
the above formulation results in

B =

⎛
⎜⎜⎜⎜⎜⎝

1 0
−1 0

. . .
0 1
0 −1

⎞
⎟⎟⎟⎟⎟⎠

, d =

⎛
⎜⎜⎜⎜⎜⎝

xU
1

−xL
1
...

xU
m

−xL
m

⎞
⎟⎟⎟⎟⎟⎠

(1)

with B ∈ R
2m×m and d ∈ R

2m.
We are interested in defining an interval approach for SVM, which we will call

I-SVM, by directly inserting interval information into the SVM formulation. Let
us suppose to add to the original training set Z a set of m-dimensional intervals,
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T = {(Ip+1, yp+1) , . . . , (In, yn)} ∈ (Im × Y)r, where each Ii = (Ii1, · · · , Iim),
with Iij =

[
xL

ij , x
U
ij

]
and xL

ij ≤ xU
ij , is an element of the space of m-dimensional

closed intervals I
m. The most extreme bounds of any interval will be quoted

xL and xU , so xL ≤ xU . By defining real values as degenerate intervals, where
lower and upper bounds are the same {xi} = [xi, xi], a general training set
ZT = Z ∪ T = {(I1, y1) , . . . , (In, yn)} = {z1, . . . , zp, zp+1, . . . , zn} ∈ (Im × Y)n

is obtained.
Using (1) and defining ui =

(
ui

11, u
i
12, . . . , u

i
m1, u

i
m2

)′ ∈ R
2m, the QP problem

in [6] can be written as minw∈Rm,ui∈R2m
1
2‖w‖2 , s.t. yiw = ui

2 − ui
1 , yiw

′xL
i ≥

1 + (Δxi)
′
ui

1 , ui ≥ 0, where zi ∈ ZT , ui
s = (ui

js)j , s = 1, 2 and Δxi =(
xU

i1 − xL
i1, . . . , x

U
im − xL

im

)
= xU

i − xL
i ∈ R

m. It can be noted that this problem
is over–parameterized, since w can be obtained in n distinct ways. This extra
freedom can be exploited for robustness purposes by defining w = 1

n

∑
i yi(ui

2 −
ui

1), which results in a simplified QP problem

min
ui

1,ui
2∈Rm

1
2n2

∥∥∥∥∥
∑

i

yi(ui
2 − ui

1)

∥∥∥∥∥
2

s.t.
(
ui

2

)′ · xL
i −

(
ui

1

)′ · xU
i ≥ 1, zi ∈ ZT

ui
1, u

i
2 ≥ 0, zi ∈ ZT

(2)

As in the usual SVM framework, the dual formulation can be derived by using
the Lagrangian L

(
ui

1, u
i
2

)
= 1

2n2

∥∥∑
i yi(ui

2 − ui
1)

∥∥2 −
∑

i ui
2 ·

(
αi · xL + νi

)
+∑

i ui
1 ·

(
αi · xU − μi

)
+

∑
i αi with αi ≥ 0, μi, νi ∈ R

m and μi, νi ≥ 0. The
Karush-Kuhn-Tucker (KKT) conditions for optimality

1
n2

yi

∑
j

yj

(
uj

2 − uj
1

)
= αi · xU

i − μi ,
1
n2

yi

∑
j

yj

(
uj

2 − uj
1

)
= αi · xL

i + νi (3)

can be used to compute the weight vector. Here, without losing generality, the
second condition is used to obtain the dual QP problem,

min
αi,νij

1
2
γ′ ·

(
qL

′qL qL
′ (Im, . . . , Im)

(Im, . . . , Im)′ qL Inm

)
· γ − (1′,0′) · γ

s.t. αi ≥ 0, zi ∈ ZT
νi ≥ 0, zi ∈ ZT

(4)

given that qL =
(
yi · xL

i

)
i
and γ′ = (α′, ν′). The vector solution can be written,

w = qL · α +
∑

i yi · νi and the bias b is obtained a–posteriori in the usual way.

4 I-SVM: an Interval Arithmetic Approach

Despite the simplifications introduced in the previous section, the size of the QP
problem (2), i.e. the number of parameters and constraints, is still very large.
A new alternative formulation is developed, leading to a SVM that is directly
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based on interval arithmetic: let us define (ui
j1)j = w−, (ui

j2)j = w+ for yi = 1,
(ui

j1)j = w+, (ui
j2)j = w− for yi = −1, and

fL
i

def
=

m∑
j=1

(
w+

j

)′ ·xL
ij−

m∑
j=1

(
w−

j

)′ ·xU
ij , fU

i
def
=

m∑
j=1

(
w+

j

)′ ·xU
ij−

m∑
j=1

(
w−

j

)′ ·xL
ij (5)

then the primal QP problem can be rewritten as

min
w+,w−∈Rm

1
2
‖w+ − w−‖2

s.t.
yi · fL

i ≥ 1, yi = 1
yi · fU

i ≥ 1, yi = −1
w+, w− ≥ 0

(6)

where w = w+ − w−, a much simpler formulation than those obtained in the
previous Section and clearly showing the connection with the conventional SVM.

4.1 Interval Arithmetic Interpretation

Given two m-dimensional intervals, I1,I2 ∈ I
m, with Ij

i = [xL
ji, x

U
ji], then the

inequality relation is defined as I1 � I2 ⇔ xL
1 ≥ xU

2 , and I1 � q ⇔ xL
1 ≥ q,

where q ∈ R
m. From (5), since w+, w− ≥ 0, it can be shown that minx∈Ii

w′ ·x =
fL

i , maxx∈Ii
w′ ·x = fU

i and w′ · Ii = {w′ · x |x ∈ Ii} = [fL
i , fU

i ]. Therefore, the
QP problem (6) can be considered, from an interval arithmetic perspective, as

min
w+,w−∈Rm

1
2
‖w+ − w−‖2

s.t. yi ·
[
fL

i , fU
i

]
� 1, zi ∈ ZT

w+, w− ≥ 0

(7)

Let us define β = min
zi∈Z+

yif
L
i , α = max

zi∈Z−
yif

U
i , then the QP problem (7) cor-

responds to finding the classifier with the largest geometrical margin β−α
w on a

given training set of intervals, wI−SV M
def
= arg max

w∈Rm

1
‖w‖ · min

zi∈ZT

(
min
x∈Ii

yi · w′ · x
)

.

Thus, using an interval arithmetic framework, (7) can be rewritten as

min
w∈Rm

1
2
‖w‖2

yi · w′ · Ii � 1, zi ∈ ZT

which is a direct generalization of the standard SVM learning problem, where a
function from I

m to I
1 is defined as fw(I)

def
=

[
fL

w (I), fU
w (I)

]
= w′ · I, given that

I = [xL
i , xU

i ], w = [wL
i , wU

i ] with wL
i = wU

i = wi.

4.2 I-SVM: QP Dual by Interval Analysis

From the primal formulation, the Lagrangian function L (w+, w−) can be written
as 1

2 ‖w+ − w−‖2 − (w+)′
(∑

Z+
γix

L
i −

∑
Z− βix

U
i + μ

)
+

∑
Z+

γi +
∑

Z− βi −
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Approach Param. Const. Approach Param. Const.
Primal Dual
Convex 2nm (2m + 1)n (Eq. 4) (m + 1)n (m + 1)n
Interval 2m n + 2m (Eq. 9) n + m n + m
Standard m n2m n2m n2m

Table 1: Complexity comparison between I-SVM approaches.

(w−)′
(∑

Z+
γix

U
i +

∑
Z− βix

L
i + ν

)
, with γi, βi ≥ 0, μ, ν ≥ 0. As in the previ-

ous case, two expressions are derived from the KKT conditions

w+ − w− =
∑
Z+

γix
L
i −

∑
Z−

βix
U
i + μ , w+ − w− =

∑
Z+

γix
U
i −

∑
Z−

βix
L
i − ν (8)

and both can be employed to calculate the weight vector w = w+−w−. Without
any loss in generality, the first expression is used and it is defined αi

def
= γi for

the positive labels (assumed as the first patterns) and αi
def
= βi for the negative

ones (the latter). Dual QP problem can be derived,

min
αi,μj

1
2
γ′ ·

⎛
⎝ q1

′q1 q1
′q2 q1

′

q2
′q1 q2

′q2 −q2
′

q1 −q2 Im

⎞
⎠ · γ − (1′,0′) · γ

s.t.
αi ≥ 0 , zi ∈ ZT
μj ≥ 0 , j = 1, . . . ,m

(9)

with γ′ = (α′, μ′) and q = (q1,q2) =
(
(yi · xL

i )Z+ , (yi · xU
i )Z−

)
. Vector w is

computed as w = q · α + μ and bias term b is obtained as usual.
It is possible to show a connection between the Convex Optimization ap-

proach developed in previous sections and these results obtained through Interval
Arithmetic. By observing that

∑
i yi

(
αix

L
i + νi

)
=

∑
Z+

αix
L
i −

∑
Z− αix

U
i +∑

Z+
νi +

∑
Z− μi, it can be defined μ =

∑
Z+

νi +
∑

Z− μi ≥ 0 and the dual QP
problem (9) is obtained.

5 Computational Complexity and Experimental Result

In order to completely analyze the computational complexity of the two pre-
sented approaches, the translation of each multidimensional interval contained
in the training set to an equivalent set of points is also considered. In this
case, the QP problem of the conventional SVM becomes minw∈Rm

1
2‖w‖2 s.t.

yi · w′ · xj
i ≥ 1 , zi ∈ ZT , j = 1, . . . , 2m, where xj

i is any of the 2m vertices of
the interval Ii ∈ ZT . Table 1 summarizes the computational complexity of the
different approaches: the Interval Arithmetic approach results in the more bal-
anced QP problem, showing both a small number of parameters to be optimized
and a small number of constraints.
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Fig. 1: I-SVM versus standard SVM.

Fig. 1 shows an example of this approach on two artificial datasets. Interval
information is not critical for the first training set (left pictures), so I-SVM
recovers the conventional SVM. The interval information (parameter μ = 0),
instead, is used in the second training set, improving the pointwise information
used for the conventional SVM (right pictures).

6 Conclusion

Imprecision in the input information, incompleteness on the patterns, discretiza-
tion procedures, prior knowledge insertion or learning speed-up can motivate
interval represented data. Differently from existing SVM approaches working on
interval data, a new formulation for a linear SVM classifier has been derived,
called I-SVM, by inserting directly interval information in the SVM algorithm.
The new approach drastically reduces the original convex-based approach com-
plexity and increases its robustness, whereas it can be interpreted as based on
Interval Arithmetic. Future research will address the extension to the nonlinear
case by introducing the interval information in nonlinear kernels.
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[5] C. Angulo, D. Anguita, and L. González. Interval discriminant analysis using
support vector machines. Technical report, Technical Univ. Catalonia, June
2006. http://www.epsevg.upc.edu/cecilio/articles/esaiirr0610.pdf.

[6] G.M. Fung, O.L. Mangasarian, and J.W. Shavlik. Knowledge-based support
vector machine classifiers. In Advances in Neural Information Processing
Systems 15, pages 521–528. MIT Press, Cambridge, MA, 2003.

228

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.


