
The Intrinsic Recurrent Support Vector Machine

Daniel Schneegaß1,2, Anton Maximilian Schaefer1,3, and Thomas Martinetz2

1- Siemens AG, Corporate Technology, Learning Systems,
Otto-Hahn-Ring 6, D-81739 Munich, Germany

2- University of Luebeck, Institute for Neuro- and Bioinformatics,
Ratzeburger Allee 160, D-23538 Luebeck, Germany

3- University of Osnabrueck, Neuroinformatics Group,
Albrechtstraße 28, D-49069 Osnabrueck, Germany

Abstract. In this work, we present a new model for a Recurrent Support
Vector Machine. We call it intrinsic because the complete recurrence is
directly incorporated within the considered optimisation problem. This
approach offers the advantage that the model straightforwardly develops
an algorithmic solution. We test the algorithm on several simple time
series. The results are promising and can be seen as a starting point for
further research. By inventing better and more efficient methods and algo-
rithms, we expect that Recurrent Support Vector Machines could become
an alternative to handle and simulate dynamical systems.

1 Introduction

The Support Vector Machine (SVM) [1] is a sophisticated and widely used tool
for classification and regression tasks. During the last years many fast and robust
methods to calculate the Support Vector solution were invented. In particular
we point out the work of Platt [2] and extensions [3]. So far the Sequential
Minimal Optimisation algorithm is considered to be the fastest batch learning
method in practice, for classification as well as for regression tasks.

There have already been some approaches for Recurrent SVMs in the past.
Most remarkably are the works of Suykens and Vandewalle [4] as well as of
Schmidhuber et al. [5]. Schmidhuber’s model can be seen as a recurrent version
of an SVM in the sense that it is a hybrid learning machine composed of a
Recurrent Neural Network (RNN) and an SVM. The RNN provides the features
for the SVM. Its parameters are determined by artificial evolution [5] whereas the
SV solution is calculated by solving the corresponding Quadratic Programming
problem. This so-called Evoke algorithm achieves outstanding results.

Our approach substantially differs from Schmidhuber’s work. We do not use
any other model than an SVM. For learning methods we restrict ourselves to
Quadratic Programming and numerical optimisation techniques such as Gradient
Descent. Most important, our Recurrent SVM itself contains the full recurrence
properties and identifies the underlying dynamical system.
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2 Support Vector Machine For Classification

In SVMs, for a given data set X ⊂ D ⊂ R
n and its labels Y ∈ {−1, 1}n, one

determines a vector w and a scalar b which realise an optimal linear classifi-
cation in the sense of the maximal margin solution using the function f(x) =
sign(wT x + b). Apart from its norm there is a unique vector of the form

w∗ = arg max
‖w‖=1,b

min
i

yi(wT xi + b),

whose class separating hyperplane holds the greatest possible distance to its
closest input vectors. It is easy to see that the optimisation problem given as

1
2
wT w �→ min

w

with yi

(
wT x + b

) ≥ 1 ∀ i

leads exactly to the desired solution [1]. Using the Lagrange formalism it turns
out that the solution of the weight vector can be written as w =

∑l
i=1 αiyixi,

where αi are the Lagrange coefficients and l is the number of training samples.
Here every strictly positive αi represents an active constraint and consequently
a Support Vector, which is classified most critically. Hence it is possible to write
the classifier finally as

f(x) = sign

(
l∑

i=1

αiyixT
i x + b

)
.

In order to deal with non-linear problems the inner product xT z with z ∈ D
is usually substituted by a symmetric and positive definite kernel K(x, z) =
〈Φ(x),Φ(z)〉 which implicitly transforms the input space into an appropriate
feature space.

In the case of data sets which are linearly non-separable within the feature
space it is usually necessary to tolerate slight errors by introducing so-called
slack variables ξi with a regularisation parameter C > 0 and modifying the
optimisation problem to e. g.

wT w + C‖ξ‖2 �→ min
w

with yi

(
wT x + b

) ≥ 1 − ξi ∀i.

This error model leads to a slightly modified kernel K ′(xi,xj) = K(xi,xj)+ δi,j

C
where δ defines the Kronecker symbol. The kernel is essentially the same as
the one which is used in kernelized Ridge Regression [1]. Hence, using this
error model, any hard margin Support Vector method can be straightforwardly
extended to an appropriate soft margin method. For details we recommend the
respective literature, e. g. [1].
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3 The Intrinsic Recurrent Support Vector Machine

In dynamical systems, classification or regression does not only depend on the
current observation, but also on past time information. Typically, in RNNs,
an additional internal state is introduced, representing the memory of the past
trajectory. Due to the limited space, we refer to [6] for a good introduction into
RNNs and dynamical systems.

Analogous to RNNs the Intrinsic Recurrent Support Vector Machine (IRSVM)
needs some kind of internal memory to represent the current state s of the sys-
tem. We implement this by introducing an additional weight vector ŵ to the
presented standard and non-recurrent SVM, so that f is replaced by f(x, s) =
sign(wT x + ŵT s + b), where x is the current observation and s the internal state.
Further, to develop the internal state in time, we use two operators, e. g. matri-
ces, A and B such that the new internal state is represented by s′ = As + Bx.
Subsequently, we derive the IRSVM using the Lagrange formalism, which is the
standard procedure to handle and understand certain types of SVMs.

We start with an extended primal optimisation problem following the 2-norm
regularisation as described in section 2 as follows.

ρ (w, ŵ, A,B) =
1
2

(
wT w + ŵT ŵ + Tr

(
AAT

)
+ Tr

(
BBT

)) �→ min
w,ŵ,A,B

with yi(wT xi + ŵT si + b) ≥ 1 ∀ i

Asi−1 + Bxi−1

‖Asi−1 + Bxi−1‖ = si ∀ i (1)

Note, that instead of the proposed ρ any other penaliser can be used. In partic-
ular we want to mention 2ρ′ = wT w + ŵT ŵ, where A and B are unpenalised.
The normalisation of si is a simple way to avoid divergence. Therefore no special
constraints have to be fulfilled by A and B. Below we write si as a function of
A and B to avoid the explicit form of eq. 1. We obtain the Lagrange functional

L =
1
2

(
wT w + ŵT ŵ + Tr

(
AAT

)
+ Tr

(
BBT

))
−

T∑
i=1

αi

(
yi

(
wT xi + ŵT si (A,B) + b

) − 1
) (2)

with the Lagrange coefficients α. Its partial derivatives are

∂L

∂w
= w −

T∑
i=1

αiyixi = 0,
∂L

∂ŵ
= ŵ −

T∑
i=1

αiyisi (A,B) = 0,

and ∂L
∂b =

∑T
i=1 αiyi = 0 for the bias. Therefrom, by replacing the inner prod-

uct xT z with a symmetric and positive definite kernel function, we derive the
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kernelized versions

wT x =
T∑

i=1

αiyiK(xi,x) (3)

ŵT s =
T∑

i=1

αiyiK
′ (si (A,B) , s) (4)

where K(xi,xj) = Φ(xi)T Φ(xj) and K ′(si, sj) = Φ′(si)T Φ′(sj) with Φ and
Φ′ transforming x and s implicitly into two appropriate feature spaces. As in
standard SVMs the kernel replaces the usual inner product. By substituting
eq. 3 and 4 into the Lagrangian we obtain

L =
1
2

(
wT w + ŵT ŵ + Tr

(
AAT

)
+ Tr

(
BBT

))
−

T∑
i=1

αi

(
yi

(
T∑

j=1

αjyjK (xj ,xi)

+
T∑

j=1

αjyjK
′ (sj (A,B) , si (A,B)) + b

)
− 1

)

and get the further partial derivatives

∂L

∂A
= A −

T∑
i=1

αiyi

T∑
j=1

αjyj
∂

∂A
K ′ (sj (A,B) , si (A,B)) = 0 (5)

∂L

∂B
= B −

T∑
i=1

αiyi

T∑
j=1

αjyj
∂

∂B
K ′ (sj (A,B) , si (A,B)) = 0 (6)

which is equal to

A =
∂

∂A
‖ŵ (A,B)‖2

, B =
∂

∂B
‖ŵ (A,B)‖2

.

Alternatively, if we take ρ′ as a penaliser, this system of equations reduces to

‖ŵ (A,B)‖2 �→ min
A,B

with modifiable A and B. However, independent of the penaliser used we finally
obtain

f(x, s) =
T∑

i=1

αiyi (K(xi,x) + K ′ (si (A,B) , s)) (7)

as a classifier where the subsequent internal state s′ is given as

s′ = As + Bx. (8)

In our derivation we restricted ourselves to classification. Apparently the regres-
sion case can be derived in a quite similar way.
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4 Initial Algorithm and First Results

For simplicity we keep the description of the proposed algorithm (alg. 1) in a
very general form and leave out the details of the numerical techniques we used.
By combining Quadratic Programming with Gradient Descent we are able to
construct a simple concrete algorithm which solves the subproblems given by
the dual form [1] of eq. 2 (wrt. w and ŵ) as well as eq. 5 and 6 (wrt. A and
B) alternately. Thereby the SV solution is always calculated using the LibSVM
toolbox [7] while the adaptation of A and B is obtained by a one-step Gradient
Descent modification in order to solve eq. 5 and 6. The development of more
sophisticated and efficient optimisation techniques for this model is an important
goal of future work.

Algorithm 1 The Intrinsic Recurrent Support Vector Machine Algorithm
Require: given set {X, Y }
Ensure: calculates maximal separating hyperplane within feature space incorporating an internal

dynamics
set s0 appropriately, A and B randomly, and ∀i : αi = 0
while the desired precision is not reached do

calculate ∀i : si according to eq. 1
solve the Support Vector Classification problem given by the training set {X̂, Y } with x̂i =
(xi, si) using KMSV (x̂i, x̂j) = K(xi, xj) + K′ (si, sj)
find the common solution of eq. 5 and 6 wrt. A and B

end while
set f with appropriate bias b as described in [1] according to eq. 7 and 8

We tested our method on five simple time series of the following two types:

• Summing
The task is to classify, observing xi, whether x1

i−r + · · · + xn
i−r + · · · +

x1
i + · · · + xn

i ≥ c. In this example the classification apparently depends
directly on r predecessor states. We define Simple Summing (r = 1),
Medium Summing (r = 2) and Hard Summing (r = 3).

• Superimposed Sine Prediction
The task is to classify, observing xi =

∑r
j=1 sin(ajti + dj) with ti = i,

whether xi+1 =
∑r

j=1 sin(ajti+1 + dj) ≥ c. We define Sine Prediction
(r = 1) and Two Superimposed Sine Prediction (r = 2).

Due to the linear separability within the input space we applied the standard
inner product, the linear kernel. Fig. 1 shows results of the classification perfor-
mance on the test data, each averaged over a hundred trials, dependent on the
dimensionality of the input space for a constant regularisation setting (C = 15).
As expected, the performance increases with higher dimensionality of the inter-
nal state, but ultimately decreases if the dimensionality gets inadequately high
for the regarded problems. This observation is an indicator for overfitting. Hence
the determination of the optimal dimensionality, i.e., the amount of information
transport needed, can be seen as a further regularisation technique.
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Fig. 1: Performance for different benchmarks and internal state dimensionalities.

5 Conclusion

In this paper we presented the IRSVM as a new model for a Recurrent SVM.
Our main aim was to point out, that recurrence and the capability to describe
dynamical systems can be realised by SVMs itself. However, the results we
achieved so far are quite promising and leave potential for future research. Our
focus will be on the advancement of the existing optimisation techniques, so that
we do not necessarily depend on Gradient Descend. We will further analyse the
convergence properties of our model to set it on mathematical foundations.
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