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Abstract. We extend a reinforcement learning algorithm which has
previously been shown to cluster data. We have previously applied the
method to unsupervised projection methods, principal component analy-
sis, exploratory projection pursuit and canonical correlation analysis. We
now show how the same methods can be used in feature spaces to per-
form kernel principal component analysis and kernel canonical correlation
analysis.

1 Introduction

Unsupervised and reinforcement learning research have tended, in the main,
to be two entirely separate streams of adaptive methods. This is somewhat
surprising in that the former is modelled on biological processes believed to be
utilised in animal and human brains while the latter is attempting to create
learning processes which an entity would use to investigate its environment in
order to maximise its long term utility.

A notable exception to the above dearth of interaction is [4] which uses a
reinforcement learning method (albeit a non-standard one) in order to cluster
data sets in an unsupervised manner. We have recently [1] investigated this
reinforcement learning algorithm in order to perform a topology preserving clus-
tering of the data and in order to perform linear projections. In this paper,
we extend the method to kernel spaces and show that we can use it to perform
kernel principal component analysis and kernel canonical correlation analysis.

2 Immediate Reward Reinforcement Learning

[7] investigated a particular form of reinforcement learning in which reward for an
action is immediate which is somewhat different from mainstream reinforcement
learning [2]. Williams [7] considered a stochastic learning unit in which the
probability of any specific output was a parameterised function of its input, x.
For the ith unit, this gives

P (yi = ζ|wi,x) = f(wi,x) (1)

where, for example,

f(wi,x) =
1

1 + exp(− ‖ wi − x ‖2) (2)
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Williams [7] considers the learning rule

∆wij = αij(ri,ζ − bij)
∂ ln P (yi = ζ|wi,x)

∂wij
(3)

where αij is the learning rate, ri,ζ is the reward for the unit outputting ζ and bij is
a reinforcement baseline which in the following we will take as the reinforcement
comparison, bij = r = 1

K

∑
ri,ζ where K is the number of times this unit has

output ζ. ([7], Theorem 1) shows that the above learning rule causes weight
changes which maximises the expected reward.

[7] gave the example of a Bernoulli unit in which P (yi = 1) = pi and so
P (yi = 0) = 1− pi. [4] applies the Bernoulli model to (unsupervised) clustering
based on which we have recently created a topology preserving algorithm. We
are more interested in the Gaussian learner from which we draw a sample y ∼
N(mi, β

2
i ), the Gaussian distribution with mean mi and variance β2

i . Each
learner has two parameters to adapt, its mean and variance. The learning rules
can be derived [7] as

∆m = αm(r − r)
‖ y −m ‖

β2
(4)

∆β = αβ(r − r)
‖ y −m ‖2 −β2

β3
(5)

We have investigated such algorithms in the context of principal component
analysis, exploratory projection pursuit and canonical correlation analysis [1].
In this paper, we apply the technique in kernel space and show that we may
perform kernel principal component analysis [5] and kernel canonical correlation
analysis [3] with immediate reward reinforcement learning.

3 Unsupervised Kernel Methods

There has been a great deal of recent interest in using kernel methods both in the
supervised learning paradigm [6] and in the unsupervised paradigm [5, 3]. Kernel
methods map the data first into a feature space in which a linear operation (such
as principal component analysis or canonical correlation analysis) is performed.
If the mapping into the feature space is a non-linear one, any linear operation
in the feature space corresponds to a nonlinear operation in the original data
space. Since we are particularly interested in applying the reinforcement learning
paradigm to unsupervised learning, we will illustrate its use in kernel space for
kernel principal component analysis and kernel canonical correlation analysis.

3.1 Kernel Principal Component Analysis (KPCA)

Let the nonlinear mapping be φ : Ξ → F where Ξ is the original data space and
F is the feature space to which the elements of Ξ are mapped. Then Kernel Prin-
cipal Component Analysissearches for the filter w = arg maxw′ EΞ(w′T φ(x)) i.e.
the weight vector in feature space which maximises the variance of the (centered)
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projections (under the constraint of orthonormality of the weight vectors. The
crucial insight is that w may be defined in terms of the points φ(x) which span
the subspace in which w lies. Thus w =

∑N
i=1 αiφ(xi). Therefore, the problem

reduces to finding the weight vector α in feature space. It is readily shown [5]
that α is the eigenvector of the scalar product matrix, K : Kij = φ(xi)T φ(xj).
Thus finding the first principal component filter w in the feature space can be
readily done by finding α = arg maxβ βT Kβ. Actually, in order to normalise w
properly, we require to normalise α appropriately, however, in the following we
shall ignore this issue since we are only interested in identifying structure in the
data sets.

Thus, with the methodology defined above, we draw α from the Gaussian
distribution N(m, βI) where now m is N×1, and I is similarly the N×N identity
matrix. At each iteration, we select a specific input, e.g. xt and calculate the
reward as r = αT Ktαt where Kt is the tth column of K i.e. that corresponding
to xt and αt is the element of α corresponding to xt. This constitutes the reward,
r.

To illustrate this we create a two dimensional data set of 100 samples, the
first 1

4 are centered at (2,2), the next 1
4 at (2,-2), and so on as shown in Figure 1.

We use a squared exponential kernel so that Kij = exp(−γ(xi−xj)2). We then
center this representation [5] using K̃ = K − 1

N 1K − 1
N K1 + 1

N2 1K1 where 1
is the N ×N matrix of 1s. Results from simulations in which γ = 0.1 and γ = 1
are shown in Figure 1.

Since kernel methods, in general, require the construction of the scalar prod-
uct (Gram) matrix, K, they are often used in batch mode rather than in online
mode as above. Then the reward function becomes r = αT Kα i.e. we are cal-
culating the reward over the whole data set at each iteration. With all other
parameters held constant and γ = 0.1, we show the results of one simulation on
the same data as before in the last diagram of Figure 1 though the simulation
had to be run for a slightly longer time.

3.2 Kernel Canonical Correlation Analysis

Canonical correlation analysis is a standard statistical technique for investigat-
ing two data sets which we believe have some underlying (linear) relationship.
This has also been extended to utilise kernel techniques [3]. Let the covariance
matrices in Feature space be defined by

Σ11 = E{(Φ(x1)− µ1)(Φ(x1)− µ1)T }
Σ22 = E{(Φ(x2)− µ2)(Φ(x2)− µ2)T }
Σ12 = E{(Φ(x1)− µ1)(Φ(x2)− µ2)T }

where now µi = E(Φ(xi)) for i = 1, 2. Let us assume for the moment that
the data has been centred in feature space (we actually use the same trick as
[5] again to centre the data). Then we wish to find those values w1 and w2

which will maximise wT
1 Σ12w2 subject to the constraints wT

1 Σ11w1 = 1 and
wT

2 Σ22w2 = 1.
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Fig. 1: Top left: the two dimensional data set. Top right: the α weights in a
simulation in which γ = 0.1. Bottom left: as above but with γ = 1. Bottom
right: with reward wtx.
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In [3], we define (K1)ij = ΦT (xi)Φ(x1j) and (K2)ij = ΦT (xi)Φ(x2j) and so
maximise αT K1K

T
2 β subject to the constraints αT K1K

T
1 α = 1 and βT K2K

T
2 β =

1. Therefore if we define Γ11 = K1K
T
1 , Γ22 = K2K

T
2 and Γ12 = K1K

T
2 we solved

the problem in the usual way: by forming matrix K = Γ−
1
2

11 Γ12Γ
− 1

2
22 and perform-

ing a singular value decomposition on it as before to get

K = (γ1, γ2, ..., γk)D(θ1, θ2, ..., θk)T (6)

where γi and θi are again the standardised eigenvectors of KKT and KT K
respectively and D is the diagonal matrix of eigenvalues.

Then the first canonical correlation vectors in feature space are given by

α1 = Γ−
1
2

11 γ1 (7)

β1 = Γ−
1
2

22 θ1 (8)

with subsequent canonical correlation vectors defined in terms of the subsequent
eigenvectors, γi and θi.

Again, we are only interested in proving the reinforcement learning method
in this paper and so we create a 100 sample, artificial data set in which the
first 80 samples in each stream are Gaussian clusters of standard deviation 0.3
round centres in each space and the last 20 samples are also Gaussian clusters of
standard deviation 1 round different centres in each space. We then randomly
initialise γ and θ and generate a reward, r = γKθ and using this to update γ
and θ. Results are shown in Figure 2. We see that the two distinct regimes
incorporating the different relationships are clearly visible. Again, we note that
we normalise the lengths of the weight vectors γ and θ to have length 1 when
actually we should be normalising w1 and w2; however this only affects the
magnitude of the results not the identification of different regimes in the data.

4 Conclusion

We have taken an existing method for immediate reinforcement learning and
applied the algorithm to two linear methods in feature space and shown that
the resulting method is clearly able to identify nonlinear structure in data sets.
In this paper, we have merely introduced the method. Further research is needed
to compare these methods with existing (both neural and standard statistical)
methods. Further, we have discussed only the first principal (resp. canonical
correlation) analysis projection; clearly, a Gram-Schmidt reduction is possible
but it is an open question as to whether the reinforcement learning paradigm
might facilitate a different approach to subsequent projections.

Given the early success of the method, we are encouraged to investigate more
mappings with the method. We will investigate both linear manifold methods
such as Independent Component Analysis [3] as well as nonlinear manifolds.
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Fig. 2: The weights into the two data streams clearly identify the two clusters in
the data set each pair of which has an underlying close but nonlinear relationship.
The first 80 samples from both data streams are of one type while the last 20
are of the other type.

References

[1] C. Fyfe and P. L. Lai. Reinforcement learning reward functions for unsuper-
vised learning. In 4th International Symposium on Neural Networks, ISNN
2007, 2007.

[2] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[3] P. L. Lai and C. Fyfe. Kernel and nonlinear canonical correlation analysis.
International Journal of Neural Systems, 10(5):365–377, 2001.

[4] A. Likas. A reinforcement learning approach to on-line clustering. Neural
Computation, 1999.

[5] B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear component analysis as
a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

[6] V. Vapnik. The nature of statistical learning theory. Springer Verlag, New
York, 1995.

[7] R. Williams. Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. Machine Learning, 8:229–256, 1992.

312

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.


