
Adaptive Global Metamodeling with Neural Networks
Dirk Gorissen, Wouter Hendrickx, Tom Dhaene

University of Antwerp - Department of Math and Computer Science
Middelheimlaan 1, 2000 Antwerp, Belgium

Abstract. Due to the scale and computational complexity of current simulation
codes, metamodels (or surrogate models) have become indispensable tools for ex-
ploring and understanding the design space. Consequently, there is great interest
in techniques that facilitate the construction and evaluation of such approximation
models while minimizing the computational cost and maximizing metamodel ac-
curacy. This paper presents an adaptive, integrated approach to global metamod-
eling based on the Multivariate Metamodeling Toolbox. An adaptive, evolutionary
inspired, modeling algorithm based on neural networks is presented and its perfor-
mance compared with rational metamodeling on a number of test problems.

1 Introduction

For many problems from science and engineering it is impractical to perform exper-
iments on the physical world directly (e.g., airfoil design, earthquake propagation).
Instead, complex, physics-based simulation codes are used to run experiments on com-
puter hardware. However, due to the computational complexity of such high-fidelity
codes, design space exploration or parameter optimization quickly becomes intractable
[7]. As a result the use of approximation models (also known as metamodels, surro-
gate models and response surface models) that mimic the behavior of the simulation
model (from now on referred to as the simulator) has become commonplace. Exam-
ples of metamodels include: RBF functions, Kriging models, Support Vector Machines
(SVM) and Artificial Neural Networks (ANN).

Before we continue we first need to make a very important distinction between two
different applications of metamodels. The first is by far the most popular and involves
building small, simple metamodels for use in design optimization. Simple metamodels
are used to guide the search towards a global optimum [7]. In the second case one is
not interested in finding the optimal parameter vector but rather in the global behavior
of the system. Here the metamodel is tuned to mimic the underlying model as closely
as needed on a subset of the domain. In this paper we are concerned with the latter.

The remainder of the paper is structured as follows: in the next section we describe
the research platform we have used to conduct our experiments. Section 3 gives an
overview of related work, followed by the treatment of the neural network modeler used
to exemplify our approach in section 4. Then we test the performance of the modeler
on a number of test problems and compare the results to rational modeling in section 5.
We conclude the paper with an evaluation of the results in section 6.

2 M3-Toolbox

The principal reason for turning towards approximation models is that the simulator is
too time consuming to run for a large number of simulations. Nevertheless, one could

187

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

argue that in order to obtain an accurate global metamodel one still needs to perform
numerous simulations, thus running into the same problem. However, we argue that this
is not the case since: (1) building a metamodel is a one-time, up-front investment, (2)
distributed computing can speedup the evaluation time and (3) adaptive modeling and
adaptive sampling (sequential design) can drastically decrease the required datapoints
to produce a good model. We have integrated (2) and (3) into a common research
platform: the Matlab Multivariate MetaModeling Toolbox (M3-Toolbox).

The M3-Toolbox was developed when research made clear that there was room
for an adaptive tool that integrated different modeling approaches and did not tie the
user down to one particular set of problems. More concretely, we were interested in
a fully automated, adaptive global metamodel construction algorithm. Given a simu-
lation model the software should produce a metamodel with as little user interaction
as possible. However, at the same time keeping in mind that there is no such thing as
a ’one-size-fits-all’, different problems need to be modeled differently. Therefore the
software should be modular and extensible but not be too cumbersome to use or con-
figure. In sum, the emphasis of the toolbox lies on the different levels of pluggability:
model types (rational functions, ANN, SVM, ...), modeling algorithms (sequential, ge-
netic, ...), sample selection (random, error based, density based, ...), model selection
(cross validation, AIC,) and sample evaluation (local, on a cluster or grid). The
behavior of each component is configurable through a central XML configuration file
and components can easily be added, removed or replaced by custom implementations.

In short, the working of the toolbox is as follows: an initial set of samples (data
points) is chosen, one or more surrogate models are constructed and their parameters
varied according to some modeling algorithm (e.g., a genetic algorithm). Models are
assigned a score based on one or more measures (e.g., cross validation, AIC) and the
adaptive modeling continues until no further improvement is possible. The models
are then ranked according to their score and new samples are selected based on the
top k models. The adaptive modeling resumes and the whole process repeats itself
until a threshold has been exceeded or the user required accuracy has been reached.
Please refer to [4] for further information on the toolbox architecture and control flow.
The toolbox, including all test problems, is freely available for non-commercial use at
http://www.coms.ua.ac.be.

3 Related Work

Regression metamodels have found their way into virtually every scientific field. Neu-
ral networks have been particularly ubiquitous with successful applications in, among
many others, economics [1] and electronics [10]. When it comes to adaptive metamod-
eling many researchers have tackled the problem of efficient sequential/experimental
design [6], adaptive model parameter selection [8], distributed metamodeling [2], and
any combination of these [3]. Regarding ANN, a lot of work has gone into applying
constructive algorithms (CC, Tiling), Genetic Algorithms (GA), Genetic Programming
(GP), Bayesian theory, or other custom algorithms [9] to the difficult problem of se-
lecting the optimal model parameters (network architecture, transfer functions, etc.). A
classic example is the EPnet system developed by Yao [9].

188

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

% Setting up the environment and modeling algorithm
% is really done in the main toolbox control loop,
% driven by the XML configuration file

algorithm = AnnBatchModeler();
algorithm.runLoop();

% The runLoop() method calls createBatch()
pop = createBatch(generation,pop):

if(generation = 0)
% Create an initial population of mutated default
% individuals (the default is specified in the XML)
pop := defaultPop();
pop := foreach p in pop Mutate(p);

else
% Keep the top 20%, re-init the next 40%,
% and mutate the rest
[elite, reinited, mutated] := split(pop,20%,40%,40%);
reinited := foreach p in reinited, reinit(p);
mutated := foreach p in mutated, mutate(p);
pop := [elite reinited mutated];

end

newNet = mutate(net):
% Choose the layer to mutate
layer := randInt(1,2);
newNet := mutateDimension(net, layer);
if(newNet.numWeights > k*numSamples)
% Dont accept architectures that could overfit
newNet := net;

end
if(rand >= 0.7)
% Reinitialize the new network based on
% the weights of the old network
newNet := reinit(newNet,net);

else
% Randomly choose new weights
newNet := reinit(newNet);

end
% Randomly change the training function
newNet.trainFcn := randPick(allowedFcns);

Figure 1: The ANN Batch Modeling Algorithm

In short though, all research efforts that we are aware of concentrate on one par-
ticular subset of the metamodeling problem in isolation. Instead, we concentrate on
developing a set of algorithms/tools that allows one to bring solutions to different sub-
problems (sequential design, model selection, distributed simulator evaluation) together
so they can reinforce each other. Note that we are not proposing a universal algorithm
that solves every metamodeling problem but rather a flexible research infrastructure
wherein different techniques can be easily integrated and compared.

4 Neural Network Modeler

One of the available model types within the M3-Toolbox is the feed-forward multi-layer
perceptron (using the standard Matlab Neural Network Toolbox primitives). Most of
the standard ANN parameters may be set through the XML configuration file: transfer
function, training rule, base architecture, number of epochs, etc. As for the modeling
algorithm, used to select the model parameters, a GA-inspired batch algorithm is used
with one mutation operator. The algorithm is shown in figure 1.

The problem of searching the ANN parameter space is not a trivial one since it can
be expected to be deceptive (cfr. the permutation problem), multi-modal and epistatic.
Therefore this evolutionary strategy (ES)-like algorithm is one of the many possibili-
ties and by no means guaranteed to be the best. This algorithm will be updated and
improved and other algorithms will be plugged in, next to it, for further study.

As can be seen from the algorithm, the parameters that are varied are: the architec-
ture, the training rule and the initial weights. The weights themselves are not evolved (a
fully connected network is assumed) but trained with a fast backprop variant. We admit
this is suboptimal since it is known that the architecture and weights are best evolved
together [9]. However, due to the added implementation complexity and the increased

189

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

running time, this was not done, but will be tackled in the near future when we turn to a
full evolutionary based modeling algorithm. In any case, the current mutation operator
already produces satisfying results, competitive with multivariate rational modeling.

5 Performance

We now turn to a number of test problems to illustrate our adaptive approach. The
ANN modeler will be run on two problems and its performance compared with that of
a rational modeler. Note that we could also have included one of the supported SVM
modelers (LS-SVM,ε-SVM,ν-SVM) in the comparison or increased the number of test
problems. However, due to space restrictions, this was not done and such comparisons
will be reported on in a future paper. As the first problem we will model Shekel’s
Foxholes (SF) function, a classic test function from optimization. It is defined as:

f(x̄) = −
∑30

j=1
1

||x̄−A(j)||2+cj
with i = 1..2, xi ∈ [0, 10]

This function is highly non-linear with numerous local minima. As the second test
case we take a problem from electronics. A simulation code was used that calculates
the complex scattering parameters S12 of a Step Discontinuity (SD) in a rectangular
waveguide (see [4] for a plot). The code takes three real inputs: the signal frequency,
the gap height and the gap length. Since the ANN modeler cannot model complex
outputs directly, the modulus of S12 was modeled. Since it is known from physics that
the behavior of a circuit in the frequency domain can be defined as a quotient of two
polynomials we should expect the rational modeler to outperform the ANN modeler in
this case.

The ANN modeler was configured with a batch size of 10 and each adaptive mod-
eling loop would terminate when (1) the maximum number of batches was reached or
(2) there was no improvement in the best model for 3 consecutive batches. The allowed
training rules were Levenberg-Marquardt back-propagation (trainlm) and Bayesian reg-
ularization back-propagation (trainbr). If trainlm was used the network was trained
with early stopping (ratios: 20%:80%). The default hidden layer structure was set to
In − 3 − 3 − Out and the default number of epochs to 700. The rational modeler
works similarly, except its new models are based on a sliding history of size 30 together
with stochastic hill climbing. The parameters varied are the weights of every input
parameter, based on which the degree in the (de)nominator is set.

The other toolbox settings were: Latin Hypercube initial experimental design of
size 60, sequential design using an adaptive error-based sampler (max 100 new samples
every iteration), local (sequential) evaluation, and model scoring using 5-fold cross
validation. The toolbox terminates on either of the following conditions: (1) number
of samples exceeds 800, (2) a cross validation score on the available samples of 0.1
(SF) or 0.001 (SD) is reached. The performance of the final model was then tested on
a testset of 10000 random points with output range [-11.55,-0.97] (SF) or on 20000
random points with range [0.37,1.00] (SD). In both cases the absolute root mean square
error (RMS) and maximum absolute error were calculated. The results are shown in
table 1 and figure 2 (SF only). The Final Model column in table 1 shows the form of

190

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

the converged surrogate model. For rational functions, this is the highest degree that
appears in the (de)nominator.

Type Score #Samples Abs RMS Max Abs Final Model
ANN 0.18 836 0.09 2.21 2-23-14-1, trainbr

Rational 0.31 832 0.31 5.08 x24y14

y17

Shekel’s Foxholes (SF)
ANN 0.00088 187 0.00089 0.00723 3-6-5-1, trainbr

Rational 0.00052 202 0.00009 0.00070 x9y5z10

x9y5z10

Step Discontinuity (SD)

Table 1: Test problem results

Figure 2: Evolution of the percentage of test samples per error category (SF)

Considering the results, we see that the ANN modeler does quite well. It out-
performs the rational modeler on the first problem (SF). The lower score of the rational
modeler is caused by the existence of poles in the domain. However, as expected, the
rational modeler performs much better on the smoother, second problem (SD). With
only a few samples it produces a very accurate metamodel that can easily replace the
original simulation code for most practical applications.

6 Evaluation

The results in this paper exemplify our general experience: for highly non linear sur-
faces ANN tend to do better than rational functions. The reason is that for high-order
polynomials the resulting metamodel tends to oscillate near the borders of the domain
and poles start to creep in, skewing the errors. Of course, the downside of using ANN is
the considerable increase in computation time. For large numbers of data points, many
epochs, cross validation, and no early stopping, ANN-based metamodeling results in
running times in the order of hours, versus minutes for rational metamodeling.

191

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

Finally, note that the goal of this paper was not the comparison per-se (plenty of
such references exist already, e.g., [5]) but the fact that a comparison is a natural re-
sult of tackling the metamodeling problem in an extensible and flexible way. Given
the pluggable research platform that the M3-Toolbox provides, it enables almost end-
less possibilities of comparison between model types, model algorithms and sampling
strategies. This information is important for any researcher needing an accurate meta-
model at a reasonable computational cost.

References

[1] R. Chaveesuk and A.E. Smith. Economic valuation of capital projects using neural
network metamodels. The Engineering Economist, 48(1):1–30, 2003.

[2] M. Hakki Eres, Graeme E. Pound, Zhuoan Jiao, Jasmin L. Wason, Fenglian Xu,
Andy J. Keane, and Simon J. Cox. Implementation and utilisation of a grid-
enabled problem solving environment in matlab. Future Generation Comp. Syst.,
21(6):920–929, 2005.

[3] A. Farhang-Mehr and S. Azarm. Bayesian meta-modelling of engineering de-
sign simulations: a sequential approach with adaptation to irregularities in the re-
sponse behaviour. International Journal for Numerical Methods in Engineering,
62(15):2104–2126, 2005.

[4] D. Gorissen, K. Crombecq, W. Hendrickx, and T. Dhaene. Grid enabled metamod-
eling. In In Proc. of 7th International Meeting on High Performance Computing
for Computational Science (VECPAR 2006), 2006.

[5] R. Jin, W. Chen, and T.W. Simpson. Comparative studies of metamodelling tech-
niques under multiple modelling criteria. Structural and Multidisciplinary Opti-
mization, 23(1):1–13, December 2001.

[6] R. Jin, W. Chen, and A. Sudjianto. On sequential sampling for global metamodel-
ing in engineering design, detc-dac34092. In ASME Design Automation Confer-
ence, Montreal, Canada, September 2002.

[7] G. Gary Wang and S. Shan. Review of metamodeling techniques in support of
engineering design optimization. ASME Transactions, Journal of Mechanical De-
sign, page in press, 2006.

[8] R.J. Yang, N. Wang, C. H. Tho, and J. P. Bobinaeu. Metamodeling devel-
opment for vehicle frontal impact simulation. Journal of Mechanical Design,
127(5):1014–1020, September 2005.

[9] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–
1447, September 1999.

[10] Q.J. Zhang, K.C. Gupta, and V.K. Devabhaktuni. Artificial neural networks for RF
and microwave design: from theory to practice. IEEE Trans. Microwave Theory
Tech, 51:1339–1350, March 2003.

192

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

